IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000764.html
   My bibliography  Save this article

A Critical Quantity for Noise Attenuation in Feedback Systems

Author

Listed:
  • Liming Wang
  • Jack Xin
  • Qing Nie

Abstract

Feedback modules, which appear ubiquitously in biological regulations, are often subject to disturbances from the input, leading to fluctuations in the output. Thus, the question becomes how a feedback system can produce a faithful response with a noisy input. We employed multiple time scale analysis, Fluctuation Dissipation Theorem, linear stability, and numerical simulations to investigate a module with one positive feedback loop driven by an external stimulus, and we obtained a critical quantity in noise attenuation, termed as “signed activation time”. We then studied the signed activation time for a system of two positive feedback loops, a system of one positive feedback loop and one negative feedback loop, and six other existing biological models consisting of multiple components along with positive and negative feedback loops. An inverse relationship is found between the noise amplification rate and the signed activation time, defined as the difference between the deactivation and activation time scales of the noise-free system, normalized by the frequency of noises presented in the input. Thus, the combination of fast activation and slow deactivation provides the best noise attenuation, and it can be attained in a single positive feedback loop system. An additional positive feedback loop often leads to a marked decrease in activation time, decrease or slight increase of deactivation time and allows larger kinetic rate variations for slow deactivation and fast activation. On the other hand, a negative feedback loop may increase the activation and deactivation times. The negative relationship between the noise amplification rate and the signed activation time also holds for the six other biological models with multiple components and feedback loops. This principle may be applicable to other feedback systems.Author Summary: Many biological systems use feedback loops to regulate dynamic interactions among different genes and proteins. Here, we ask how interlinked feedback loops control the timing of signal transductions and responses and, consequently, attenuate noise. Drawing on simple modeling along with both analytical insights and computational assessments, we have identified a key quantity, termed as the “signed activation time”, that dictates a system's ability of attenuating noise. This quantity combining the speed of deactivation and activation in signal responses, relative to the input noise frequency, is determined by the property of feedback systems when noises are absent. In general, such quantity could be measured experimentally through the output response time of a signaling system driven by pulse stimulus. This principle for noise attenuation in feedback loops may also be applicable to other biological systems involving more complex regulations.

Suggested Citation

  • Liming Wang & Jack Xin & Qing Nie, 2010. "A Critical Quantity for Noise Attenuation in Feedback Systems," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-17, April.
  • Handle: RePEc:plo:pcbi00:1000764
    DOI: 10.1371/journal.pcbi.1000764
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000764
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000764&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.