IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030108.html
   My bibliography  Save this article

A Mass Conserved Reaction–Diffusion System Captures Properties of Cell Polarity

Author

Listed:
  • Mikiya Otsuji
  • Shuji Ishihara
  • Carl Co
  • Kozo Kaibuchi
  • Atsushi Mochizuki
  • Shinya Kuroda

Abstract

Cell polarity is a general cellular process that can be seen in various cell types such as migrating neutrophils and Dictyostelium cells. The Rho small GTP(guanosine 5′-tri phosphate)ases have been shown to regulate cell polarity; however, its mechanism of emergence has yet to be clarified. We first developed a reaction–diffusion model of the Rho GTPases, which exhibits switch-like reversible response to a gradient of extracellular signals, exclusive accumulation of Cdc42 and Rac, or RhoA at the maximal or minimal intensity of the signal, respectively, and tracking of changes of a signal gradient by the polarized peak. The previous cell polarity models proposed by Subramanian and Narang show similar behaviors to our Rho GTPase model, despite the difference in molecular networks. This led us to compare these models, and we found that these models commonly share instability and a mass conservation of components. Based on these common properties, we developed conceptual models of a mass conserved reaction–diffusion system with diffusion–driven instability. These conceptual models retained similar behaviors of cell polarity in the Rho GTPase model. Using these models, we numerically and analytically found that multiple polarized peaks are unstable, resulting in a single stable peak (uniqueness of axis), and that sensitivity toward changes of a signal gradient is specifically restricted at the polarized peak (localized sensitivity). Although molecular networks may differ from one cell type to another, the behaviors of cell polarity in migrating cells seem similar, suggesting that there should be a fundamental principle. Thus, we propose that a mass conserved reaction–diffusion system with diffusion-driven instability is one of such principles of cell polarity.: Eukaryotic cells such as neutrophils and Dictyostelium cells respond to temporal and spatial gradients of extracellular signals with directional movements. In a migrating cell, specific molecular events take place at the front and back edges. The spatially distinctive molecular accumulation inside cells is known as cell polarity. Despite numerous experimental and theoretical studies, its mechanism of emergence has yet to be clarified. We first developed a mathematical model of the Rho small GTP(guanosine 5′-tri phosphate)ases that cooperatively regulate cell polarity, and showed that the model generates specific spatial accumulation of the molecules. Based on our Rho GTPases model and other models, we further established a conceptual model, a mass conserved reaction–diffusion system, and showed that diffusion-driven instability and a mass conservation of molecules that have active and inactive states are sufficient for polarity formation. We numerically and analytically found that molecular accumulations at multiple sites are unstable, resulting in a single stable front–back axis, and that sensitivity toward changes of a signal gradient is specifically restricted at the front of a polarized cell. We propose that a mass conserved reaction–diffusion system is one of the fundamental principles of cell polarity.

Suggested Citation

  • Mikiya Otsuji & Shuji Ishihara & Carl Co & Kozo Kaibuchi & Atsushi Mochizuki & Shinya Kuroda, 2007. "A Mass Conserved Reaction–Diffusion System Captures Properties of Cell Polarity," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:0030108
    DOI: 10.1371/journal.pcbi.0030108
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030108
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030108&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.