IDEAS home Printed from https://ideas.repec.org/a/pkp/rocere/v10y2023i3p83-95id3494.html
   My bibliography  Save this article

A secure and effective data aggregation in WSN for improved security and data privacy

Author

Listed:
  • S Suma Christal Mary
  • K Murugeswari
  • S Jyothi Shri
  • N Senthamilarasi

Abstract

The increasing prevalence of internet usage and mobile devices has underscored the critical importance of safeguarding personal data. This is especially important in Wireless Sensor Networks (WSNs), where information typically requires in-network computing and collaborative processing. These computationally demanding approaches are not suitable for resource-constrained WSN nodes. Aggregating data effectively while protecting user data is a major challenge in wireless sensor networks. Many privacies of homomorphism encryption-based WSN data aggregation methods have been created and investigated recently. Since cluster leaders (aggregators) may rapidly combine cypher texts without decryption, communication overhead is reduced, making these data aggregation methods more secure than traditional ones. However, the base station only receives aggregated output, causing issues. Initial limits apply to aggregating functions. If the aggregated output is the sum of sensing data, the base station cannot acquire the maximum value. Second, attaching message digests or signatures to sensory samples does not allow the base station to validate data authenticity. In dangerous places, WSNs must be energy-efficient and private. In this research, we present a data aggregation method known as Energy-Efficient and Privacy-Preserving (E2P2). E2P2 data aggregation utilizes less energy and yields more accurate results. Private data aggregation with increased accuracy and hybrid encryption is presented in this research. The goal is to reduce data transmission and energy use collisions and offset collision-induced loss. Extensive simulations compare E2P2 to earlier approaches. Experimental results show that E2P2 outperforms other algorithms. Good exactness, complexity, and safety are demonstrated by theoretical and simulation results.

Suggested Citation

  • S Suma Christal Mary & K Murugeswari & S Jyothi Shri & N Senthamilarasi, 2023. "A secure and effective data aggregation in WSN for improved security and data privacy," Review of Computer Engineering Research, Conscientia Beam, vol. 10(3), pages 83-95.
  • Handle: RePEc:pkp:rocere:v:10:y:2023:i:3:p:83-95:id:3494
    as

    Download full text from publisher

    File URL: https://archive.conscientiabeam.com/index.php/76/article/view/3494/7739
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pkp:rocere:v:10:y:2023:i:3:p:83-95:id:3494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dim Michael (email available below). General contact details of provider: https://archive.conscientiabeam.com/index.php/76/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.