Author
Listed:
- Ming Keat Yeong
- Eric Tatt Wei Ho
Abstract
Design verification is the dominant stage that consumes the most resources in the digital integrated circuit (IC) design process. Design verification is important because human designers imperfectly convert high-level specifications to low-level circuit implementations using standard cell logic, which is nonlinear and complex to predict and characterize. The widening process variations in shrinking process technologies while digital designs grow in scale and complexity to the extent of being impossible to fully or intuitively identify all temporal interactions of a specific design. Deep neural networks (DNN) are being progressively integrated into the sophisticated software tool chain and design process flow of digital IC as artificial intelligence can learn relationships and correlations in complex, high-dimensional, and multi-factorial problems. In this work, we propose to apply DNN to implement digital IC to minimize the complexity of digital design verification. We posit that DNN can learn to implement circuit functions directly from high-level specifications without requiring detailed specifications from the designer. Trained neural networks can be implemented on neuromorphic hardware to achieve greater power and compute efficiencies than the conventional standard cell implementation. We demonstrate that over 150 randomly generated finite state machines (FSM) can be learned effectively with Recurrent Neural Network (RNN) comprising Gated Recurrent Units (GRU) with different complexity as indicated by the number of states and inputs to the FSM. Our proposed methodology of learning RNN GRU implementations of FSM demonstrates a way forward to reduce the cost and effort of design verification, ultimately leading towards faster digital IC design cycles.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pkp:rocere:v:10:y:2023:i:3:p:122-136:id:3512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dim Michael (email available below). General contact details of provider: https://archive.conscientiabeam.com/index.php/76/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.