Author
Abstract
Using daily observations of the index and stock market returns for the Peruvian case from January 3, 1990 to May 31, 2013, this paper models the distribution of daily loss probability, estimates maximum quantiles and tail probabilities of this distribution, and models the extremes through a maximum threshold. This is used to obtain the better measurements of the Value at Risk (VaR) and the Expected Short-Fall (ES) at 95% and 99%. One of the results on calculating the maximum annual block of the negative stock market returns is the observation that the largest negative stock market return (daily) is 12.44% in 2011. The shape parameter is equal to -0.020 and 0.268 for the annual and quarterly block, respectively. Then, in the first case we have that the non-degenerate distribution function is Gumbel-type. In the other case, we have a thick-tailed distribution (Fréchet). Estimated values of the VaR and the ES are higher using the Generalized Pareto Distribution (GPD) in comparison with the Normal distribution and the differences at 99.0% are notable. Finally, the non-parametric estimation of the Hill tail-index and the quantile for negative stock market returns shows quite instability. || Usando observaciones diarias del índice y los retornos bursátiles para el caso Peruano desde el 3 de enero de 1990 hasta el 31 de mayo de 2013, este documento modela la distribución de las probabilidades de pérdidas diarias, estima los cuantiles máximos y las colas de la distribución y finalmente, modela los valores extremos usando un umbral máximo. Todo esto es usado para obtener una mejor medida del valor en riesgo (VaR) y de la pérdida esperada (ES) al 95% y 99% de confianza. Uno de los resultados de calcular el bloque máximo anual de los retornos bursátiles negativos es la observación que el retorno bursátil más negativo (diario) es 12.44% en el 2011. El parámetro de forma es igual a -0.020 y 0.268 para los bloques anuales y trimestrales, respectivamente. En consecuencia en el primer caso tenemos una distribución de tipo Gumbel. En el otro caso se tiene una distribución de cola pesada (Fréchet). Los valores estimados para el VaR y el ES son más elevados utilizando una distribución de tipo Pareto Generalizada (GPD) en comparación con la distribución normal y las diferencias al 99% son remarcables. Finalmente, la estimación no paramétrica del indice de cola de Hill y del cuantil para retornos negativos muestra ser bastante inestable.
Suggested Citation
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:23:y:2017:i:1:p:48-74. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.