Author
Listed:
- Blanco Oliver, Antonio J.
(Departamento de Economía Financiera y Dirección de Operaciones. Universidad de Sevilla (España))
- Irimia Diéguez, Ana I.
(Departamento de Economía Financiera y Dirección de Operaciones. Universidad de Sevilla (España))
- Vázquez Cueto, María José
(Departamento de Economía Aplicada III. Universidad de Sevilla (España))
Abstract
La importancia de las micro-entities como generadoras de empleo y propulsoras de la actividad económica conlleva, unida a sus mayores tasas de quiebra y a su dificultad para acceder a las fuentes de financiación, la necesidad de diseñar métodos apropiados que anticipen sus quiebras. Con este fin, en este trabajo se desarrolla un modelo híbrido mediante la combinación de enfoques paramétricos y no paramétricos para la detección de sus quiebras. Para ello, se seleccionan las variables con mayor poder predictivo para detectar la quiebra mediante un modelo híbrido de regresión logística (LR) y árboles de regresión y clasificación (CART). Nuestros resultados muestran que este modelo híbrido obtiene una mejor performance que aquellos modelos implementados de forma aislada, además de tener una más fácil interpretación y una convergencia más rápida. Por otra parte, se constata la conveniencia de la introducción de variables no financieras y macroeconómicas que complementen a la información proporcionada por los ratios financieros para la predicción de la quiebra de las micro-entities, lo cual está en línea con las características propias e idiosincrasia de este tamaño empresarial recientemente definido por la Comisión Europea. || The importance of micro-entities due to their generation of employment and propelling economic activity, together with the fact of their particularities, implies the need to design appropriate methods that anticipate their bankruptcies. For that purpose, a hybrid model by combining parametric and nonparametric approaches is developed in this paper. First, the variables with the highest predictive power to detect bankruptcy are selected using logistic regression (LR). Subsequently, a non-parametric method, namely regression trees and classification (CART), is then applied to companies classified as "bankruptcy" or "non-bankruptcy". Our results show that this model provides a better result than when it is implemented in isolation, which joins its easier interpretation and faster convergence. Moreover, we demonstrate that the introduction of non-financial and macroeconomic variables complement the financial ratios for bankruptcy prediction. Findings are based on a data set of micro-entities (MEs), as recently defined by the European Union.
Suggested Citation
Blanco Oliver, Antonio J. & Irimia Diéguez, Ana I. & Vázquez Cueto, María José, 2016.
"Diseño de un modelo específico para la predicción de la quiebra de micro-entities || Design of a Specific Model for Predicting Micro-Entities Failure,"
Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 22(1), pages 3-18, December.
Handle:
RePEc:pab:rmcpee:v:22:y:2016:i:1:p:3-18
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
;
;
;
;
JEL classification:
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
- G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:22:y:2016:i:1:p:3-18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.