IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v12y2011i1p81-110.html
   My bibliography  Save this article

¿Qué factores explican la pobreza multidimensional en España? Una aproximación a través de los modelos de ecuaciones estructurales || What Factors Explain the Multimensional Poverty in Spain? An Approach by Means of Structural Equation Models

Author

Listed:
  • Poza Lara, Carlos

    () (Departamento de Economía y Administración de Empresas Universidad Antonio de Nebrija, Madrid)

  • Fernández Cornejo, José Andrés

    () (Departamento de Economía Aplicada III (Política Económica) Universidad Complutense de Madrid)

Abstract

La finalidad de este estudio es presentar los factores más importantes que explican la pobreza multidimensional en España, destacando las interrelaciones entre los propios elementos explicativos, con el ánimo de potenciar los efectos de la política económica contra la pobreza. Para ello, se ha construido un modelo de ecuaciones estructurales utilizando la muestra ampliada del Panel de Hogares de la Unión Europea del año 2000. El nivel de educación y el empleo parecen ser los constructos más determinantes. Concretamente,el nivel de formación y el tipo de contrato son las variables con mayor poder explicativo sobre la pobreza multidimensional. || The aim of this study is to present the most important factors that explain multidimensional poverty in Spain, highlighting the relationships between the explanatory elements themselves in the spirit of enhancing the effects of poverty policy. For this purpose, we have designed a Structural Equation Model using the enlarged sample of Household Panel European Union in 2000. Education and employment seem to be the most determining latent construct. In particular, the level of education and the type of employment contract are the most important variables to explain the multidimensional poverty.

Suggested Citation

  • Poza Lara, Carlos & Fernández Cornejo, José Andrés, 2011. "¿Qué factores explican la pobreza multidimensional en España? Una aproximación a través de los modelos de ecuaciones estructurales || What Factors Explain the Multimensional Poverty in Spain? An Appro," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 12(1), pages 81-110, December.
  • Handle: RePEc:pab:rmcpee:v:12:y:2011:i:1:p:81-110
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/pdf/vol12/art54.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/bibtex.php?id=54
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lorenzo Cappellari & Stephen P. Jenkins, 2006. "Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation," Stata Journal, StataCorp LP, pages 156-189.
    2. Gospodinov, Nikolay, 2002. "Median unbiased forecasts for highly persistent autoregressive processes," Journal of Econometrics, Elsevier, pages 85-101.
    3. Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
    4. Charles Engel, 2006. "Equivalence Results for Optimal Pass-Through, Optimal Indexing to Exchange Rates, and Optimal Choice of Currency for Export Pricing," Journal of the European Economic Association, MIT Press, vol. 4(6), pages 1249-1260, December.
    5. Franses, Philip Hans & Kranendonk, Henk C. & Lanser, Debby, 2011. "One model and various experts: Evaluating Dutch macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 482-495, April.
    6. Kajal Lahiri & Gultekin Isiklar & Prakash Loungani, 2006. "How quickly do forecasters incorporate news? Evidence from cross-country surveys," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 703-725.
    7. Clements, Michael P., 2003. "Some possible directions for future research," International Journal of Forecasting, Elsevier, vol. 19(1), pages 1-3.
    8. Paul Goodwin, 2005. "How to Integrate Management Judgment with Statistical Forecasts," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 1, pages 8-12, June.
    9. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    10. Mihaela Bratu (Simionescu), 2013. "Filters or Holt Winters Technique to Improve the Forecasts for USA Inflation Rate?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(1), pages 126-136, February.
    11. Philip Arestis & Malcolm Sawyer, 2013. "Moving from Inflation Targeting to Prices and Incomes Policy," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(1), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    pobreza multidimensional; ecuaciones estructurales; multidimensional poverty; structural equations.;

    JEL classification:

    • H31 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - Household
    • H75 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Government: Health, Education, and Welfare
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:12:y:2011:i:1:p:81-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publicación Digital - UPO) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/dmupoes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.