IDEAS home Printed from
   My bibliography  Save this article

Estimation of Dynamic Panel Data Sample Selection Models


  • Ekaterini Kyriazidou


This paper considers the problem of identification and estimation in panel data sample selection models with a binary selection rule, when the latent equations contain strictly exogenous variables, lags of the dependent variables, and unobserved individual effects. We derive a set of conditional moment restrictions which are then exploited to construct two-step GMM-type estimators for the parameters of the main equation. In the first step, the unknown parameters of the selection equation are consistently estimated. In the second step, these estimates are used to construct kernel weights in a manner such that the weight that any two-period individual observation receives in the estimation varies inversely with the relative magnitude of the sample selection effect in the two periods. Under appropriate assumptions, these "kernel-weighted" GMM estimators are consistent and asymptotically normal. The finite sample properties of the proposed estimators are investigated in a small Monte-Carlo study.

Suggested Citation

  • Ekaterini Kyriazidou, 2001. "Estimation of Dynamic Panel Data Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 543-572.
  • Handle: RePEc:oup:restud:v:68:y:2001:i:3:p:543-572.

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:68:y:2001:i:3:p:543-572.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.