IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Impossibility of Strategy-Proof Mechanisms in Economies with Pure Public Goods

Listed author(s):
  • Lin Zhou
Registered author(s):

    This paper investigates the structures of strategy-proof mechanisms in general models of economies with pure public goods. Under the assumptions that the set of allocations is a subset of some finite-dimensional Euclidean space and that the admissible preferencees are continuous and convex, I establish that any strategy-proof mechanism is dictatorial whenever the decision problem is of more than one dimension. Furthermore, I establish a similar result when preference relations also satisfy the additional assumption of monotonicity. These results properly extend the Gibbard-Satterthwaite theorem to economies with pure public goods.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.2307/2298048
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Oxford University Press in its journal The Review of Economic Studies.

    Volume (Year): 58 (1991)
    Issue (Month): 1 ()
    Pages: 107-119

    as
    in new window

    Handle: RePEc:oup:restud:v:58:y:1991:i:1:p:107-119.
    Contact details of provider:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:58:y:1991:i:1:p:107-119.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.