IDEAS home Printed from https://ideas.repec.org/a/oup/qjecon/v133y2018i2p871-925..html
   My bibliography  Save this article

Recommender Systems as Mechanisms for Social Learning

Author

Listed:
  • Yeon-Koo Che
  • Johannes Hörner

Abstract

This article studies how a recommender system may incentivize users to learn about a product collaboratively. To improve the incentives for early exploration, the optimal design trades off fully transparent disclosure by selectively overrecommending the product (or “spamming”) to a fraction of users. Under the optimal scheme, the designer spams very little on a product immediately after its release but gradually increases its frequency; she stops it altogether when she becomes sufficiently pessimistic about the product. The recommender’s product research and intrinsic/naive users “seed” incentives for user exploration and determine the speed and trajectory of social learning. Potential applications for various Internet recommendation platforms and implications for review/ratings inflation are discussed.

Suggested Citation

  • Yeon-Koo Che & Johannes Hörner, 2018. "Recommender Systems as Mechanisms for Social Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 871-925.
  • Handle: RePEc:oup:qjecon:v:133:y:2018:i:2:p:871-925.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/qje/qjx044
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:qjecon:v:133:y:2018:i:2:p:871-925.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/qje .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.