IDEAS home Printed from
   My bibliography  Save this article

Detecting ARCH Effects in Non-Gaussian Time Series


  • Burkhard Raunig


Engles ARCH test has become the standard test for ARCH effects in applied work. Under non-normality the true rejection probability of this test can differ substantially from the nominal level, however. Bootstrap and Monte Carlo versions of the test may then be used instead. This paper proposes an alternative test procedure. The new test exploits the empirical distribution of the data and an extended probability integral transformation. The test is compared with the former tests in Monte Carlo experiments. Under normality, the new test works as well as the conventional Monte Carlo test and the bootstrap. Under non-normality, the test tends to be more accurate and more powerful than the bootstrapped ARCH test. The procedure is then used to test for ARCH effects in S&P 500 returns sampled at different frequencies. In contrast to the standard and the bootstrapped ARCH tests, the new test detects ARCH effects in the transformed low-frequency returns. Copyright The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email:, Oxford University Press.

Suggested Citation

  • Burkhard Raunig, 2008. "Detecting ARCH Effects in Non-Gaussian Time Series," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(2), pages 271-289, Spring.
  • Handle: RePEc:oup:jfinec:v:6:y:2008:i:2:p:271-289

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:6:y:2008:i:2:p:271-289. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.