IDEAS home Printed from https://ideas.repec.org/a/oup/jcomle/v14y2018i4p568-607..html
   My bibliography  Save this article

Algorithms, Machine Learning, And Collusion

Author

Listed:
  • Ulrich Schwalbe

Abstract

This paper discusses whether self-learning price-setting algorithms can coordinate their pricing behavior to achieve a collusive outcome that maximizes the joint profits of the firms using them. Although legal scholars have generally assumed that algorithmic collusion is not only possible but also exceptionally easy, computer scientists examining cooperation between algorithms as well as economists investigating collusion in experimental oligopolies have countered that coordinated, tacitly collusive behavior is not as rapid, easy, or even inevitable as often suggested. Research in experimental economics has shown that the exchange of information is vital to collusion when more than two firms operate within a given market. Communication between algorithms is also a topic in research on artificial intelligence, in which some scholars have recently indicated that algorithms can learn to communicate, albeit in somewhat limited ways. Taken together, algorithmic collusion currently seems far more difficult to achieve than legal scholars have often assumed and is thus not a particularly relevant competitive concern at present. Moreover, there are several legal problems associated with algorithmic collusion, including questions of liability, of auditing and monitoring algorithms, and of enforcing competition law.

Suggested Citation

  • Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
  • Handle: RePEc:oup:jcomle:v:14:y:2018:i:4:p:568-607.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/joclec/nhz004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jcomle:v:14:y:2018:i:4:p:568-607.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/jcle .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.