IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v24y2021i1p83-102..html
   My bibliography  Save this article

Generalized Forecast Averaging in Autoregressions with a Near Unit Root

Author

Listed:
  • Mohitosh Kejriwal
  • Xuewen Yu

Abstract

SummaryThis paper develops a new approach to forecasting a highly persistent time series that employs feasible generalized least squares (FGLS) estimation of the deterministic components in conjunction with Mallows model averaging. Within a local-to-unity asymptotic framework, we derive analytical expressions for the asymptotic mean squared error and one-step-ahead mean squared forecast risk of the proposed estimator and show that the optimal FGLS weights are different from their ordinary least squares (OLS) counterparts. We also provide theoretical justification for a generalized Mallows averaging estimator that incorporates lag order uncertainty in the construction of the forecast. Monte Carlo simulations demonstrate that the proposed procedure yields a considerably lower finite-sample forecast risk relative to OLS averaging. An application to U.S. macroeconomic time series illustrates the efficacy of the advocated method in practice and finds that both persistence and lag order uncertainty have important implications for the accuracy of forecasts.

Suggested Citation

  • Mohitosh Kejriwal & Xuewen Yu, 2021. "Generalized Forecast Averaging in Autoregressions with a Near Unit Root," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 83-102.
  • Handle: RePEc:oup:emjrnl:v:24:y:2021:i:1:p:83-102.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utaa006
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:24:y:2021:i:1:p:83-102.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.