IDEAS home Printed from
   My bibliography  Save this article

Semiparametric inference in mixture models with predictive recursion marginal likelihood


  • Ryan Martin
  • Surya T. Tokdar


Predictive recursion is an accurate and computationally efficient algorithm for nonparametric estimation of mixing densities in mixture models. In semiparametric mixture models, however, the algorithm fails to account for any uncertainty in the additional unknown structural parameter. As an alternative to existing profile likelihood methods, we treat predictive recursion as a filter approximation by fitting a fully Bayes model, whereby an approximate marginal likelihood of the structural parameter emerges and can be used for inference. We call this the predictive recursion marginal likelihood. Convergence properties of predictive recursion under model misspecification also lead to an attractive construction of this new procedure. We show pointwise convergence of a normalized version of this marginal likelihood function. Simulations compare the performance of this new approach with that of existing profile likelihood methods and with Dirichlet process mixtures in density estimation. Mixed-effects models and an empirical Bayes multiple testing application in time series analysis are also considered. Copyright 2011, Oxford University Press.

Suggested Citation

  • Ryan Martin & Surya T. Tokdar, 2011. "Semiparametric inference in mixture models with predictive recursion marginal likelihood," Biometrika, Biometrika Trust, vol. 98(3), pages 567-582.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:3:p:567-582

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Martin, Ryan, 2012. "Convergence rate for predictive recursion estimation of finite mixtures," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 378-384.
    2. Martin, Ryan & Han, Zhen, 2016. "A semiparametric scale-mixture regression model and predictive recursion maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 75-85.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:3:p:567-582. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.