IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i1p199-214.html
   My bibliography  Save this article

The effect of correlation in false discovery rate estimation

Author

Listed:
  • Armin Schwartzman
  • Xihong Lin

Abstract

The objective of this paper is to quantify the effect of correlation in false discovery rate analysis. Specifically, we derive approximations for the mean, variance, distribution and quantiles of the standard false discovery rate estimator for arbitrarily correlated data. This is achieved using a negative binomial model for the number of false discoveries, where the parameters are found empirically from the data. We show that correlation may increase the bias and variance of the estimator substantially with respect to the independent case, and that in some cases, such as an exchangeable correlation structure, the estimator fails to be consistent as the number of tests becomes large. Copyright 2011, Oxford University Press.

Suggested Citation

  • Armin Schwartzman & Xihong Lin, 2011. "The effect of correlation in false discovery rate estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 199-214.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:199-214
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq075
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    2. Ian Barnett & Rajarshi Mukherjee & Xihong Lin, 2017. "The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 64-76, January.
    3. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    4. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    5. Sean M Devlin & Axel Martin & Irina Ostrovnaya, 2021. "Identifying prognostic pairwise relationships among bacterial species in microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-12, November.
    6. Arnab Maity & Xihong Lin, 2011. "Powerful Tests for Detecting a Gene Effect in the Presence of Possible Gene–Gene Interactions Using Garrote Kernel Machines," Biometrics, The International Biometric Society, vol. 67(4), pages 1271-1284, December.
    7. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    8. Chen, Xiongzhi & Doerge, R.W., 2020. "A strong law of large numbers related to multiple testing normal means," Statistics & Probability Letters, Elsevier, vol. 159(C).
    9. Can Shao & Jun Li & Ying Cheng, 2016. "Detection of Test Speededness Using Change-Point Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1118-1141, December.
    10. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    11. Noirrit Kiran Chandra & Sourabh Bhattacharya, 2021. "Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 891-920, October.
    12. Benjamin R. Auer, 2022. "On false discoveries of standard t-tests in investment management applications," Review of Managerial Science, Springer, vol. 16(3), pages 751-768, April.
    13. Chen, Xiongzhi, 2020. "A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:199-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.