IDEAS home Printed from
   My bibliography  Save this article

Partial envelopes for efficient estimation in multivariate linear regression


  • Zhihua Su
  • R. Dennis Cook


We introduce the partial envelope model, which leads to a parsimonious method for multivariate linear regression when some of the predictors are of special interest. It has the potential to achieve massive efficiency gains compared with the standard model in the estimation of the coefficients for the selected predictors. The partial envelope model is a variation on the envelope model proposed by Cook et al. (2010) but, as it focuses on part of the predictors, it has looser restrictions and can further improve the efficiency. We develop maximum likelihood estimation for the partial envelope model and discuss applications of the bootstrap. An example is provided to illustrate some of its operating characteristics. Copyright 2011, Oxford University Press.

Suggested Citation

  • Zhihua Su & R. Dennis Cook, 2011. "Partial envelopes for efficient estimation in multivariate linear regression," Biometrika, Biometrika Trust, vol. 98(1), pages 133-146.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:133-146

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    2. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    3. Wei, Ying & Carroll, Raymond J., 2009. "Quantile Regression With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1129-1143.
    4. Delaigle, Aurore & Hall, Peter, 2008. "Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 280-287, March.
    5. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
    6. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(04), pages 1010-1043, August.
    7. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    8. Purdom Elizabeth & Holmes Susan P, 2005. "Error Distribution for Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:jmvana:v:163:y:2018:i:c:p:37-50 is not listed on IDEAS
    2. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    3. repec:oup:biomet:v:104:y:2017:i:3:p:743-749. is not listed on IDEAS
    4. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    5. Cook, R. Dennis & Forzani, Liliana & Su, Zhihua, 2016. "A note on fast envelope estimation," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 42-54.
    6. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:133-146. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.