IDEAS home Printed from
   My bibliography  Save this article

Pairwise curve synchronization for functional data


  • Rong Tang
  • Hans-Georg Müller


Data collected by scientists are increasingly in the form of trajectories or curves. Often these can be viewed as realizations of a composite process driven by both amplitude and time variation. We consider the situation in which functional variation is dominated by time variation, and develop a curve-synchronization method that uses every trajectory in the sample as a reference to obtain pairwise warping functions in the first step. These initial pairwise warping functions are then used to create improved estimators of the underlying individual warping functions in the second step. A truncated averaging process is used to obtain robust estimation of individual warping functions. The method compares well with other available time-synchronization approaches and is illustrated with Berkeley growth data and gene expression data for multiple sclerosis. Copyright 2008, Oxford University Press.

Suggested Citation

  • Rong Tang & Hans-Georg Müller, 2008. "Pairwise curve synchronization for functional data," Biometrika, Biometrika Trust, vol. 95(4), pages 875-889.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:875-889

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Eric Schoen, 1999. "Designing fractional two-level experiments with nested error structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 495-508.
    2. GOOS, Peter, "undated". "The usefulness of optimal design for generating blocked and split-plot response surface experiments," Working Papers 2005033, University of Antwerp, Faculty of Applied Economics.
    3. D. R. Bingham & E. D. Schoen & R. R. Sitter, 2004. "Designing fractional factorial split-plot experiments with few whole-plot factors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 325-339.
    4. Bradley Jones & Peter Goos, 2007. "A candidate-set-free algorithm for generating "D"-optimal split-plot designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 347-364.
    5. C. J. Brien & R. A. Bailey, 2006. "Multiple randomizations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 571-609.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dimeglio, Chloé & Gallón, Santiago & Loubes, Jean-Michel & Maza, Elie, 2014. "A robust algorithm for template curve estimation based on manifold embedding," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 373-386.
    2. Albarrán, Irene & Alonso González, Pablo & Arribas Gil, Ana, 2013. "Dependency evolution in Spanish disabled population : a functional data analysis approach," DES - Working Papers. Statistics and Econometrics. WS ws130403, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    4. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:875-889. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.