IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i3p705-718.html
   My bibliography  Save this article

Estimation of the mean function with panel count data using monotone polynomial splines

Author

Listed:
  • Minggen Lu
  • Ying Zhang
  • Jian Huang

Abstract

We study nonparametric likelihood-based estimators of the mean function of counting processes with panel count data using monotone polynomial splines. The generalized Rosen algorithm, proposed by Zhang & Jamshidian (2004), is used to compute the estimators. We show that the proposed spline likelihood-based estimators are consistent and that their rate of convergence can be faster than n-super-1/3. Simulation studies with moderate samples show that the estimators have smaller variances and mean squared errors than their alternatives proposed by Wellner & Zhang (2000). A real example from a bladder tumour clinical trial is used to illustrate this method. Copyright 2007, Oxford University Press.

Suggested Citation

  • Minggen Lu & Ying Zhang & Jian Huang, 2007. "Estimation of the mean function with panel count data using monotone polynomial splines," Biometrika, Biometrika Trust, vol. 94(3), pages 705-718.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:705-718
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm057
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jiang & Sun, Zhimeng & Xie, Tianfa, 2013. "M-estimation for the partially linear regression model under monotonic constraints," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1353-1363.
    2. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.
    3. Hangjin Jiang & Wen Su & Xingqiu Zhao, 2020. "Robust estimation for panel count data with informative observation times and censoring times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 65-84, January.
    4. Jianhong Wang & Xiaoyan Lin, 2020. "A Bayesian approach for semiparametric regression analysis of panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 402-420, April.
    5. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 0. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-28.
    6. Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
    7. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    8. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    9. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    10. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    11. Wanrong Liu & Jianglin Fang & Xuewen Lu, 2018. "Additive–multiplicative hazards model with current status data," Computational Statistics, Springer, vol. 33(3), pages 1245-1266, September.
    12. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Rejoinder on: Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 65-71, May.
    13. Lu, Xuewen & Pordeli, Pooneh & Burke, Murray D. & Song, Peter X.-K., 2016. "Partially linear single-index proportional hazards model with current status data," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 14-36.
    14. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    15. Liang, Baosheng & Hu, Tao & Tong, Xingwei, 2015. "Spline-based sieve estimation in monotone constrained varying-coefficient partially linear EV model," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 169-175.
    16. Chen, Xuerong & Hu, Tao & Sun, Jianguo, 2017. "Sieve maximum likelihood estimation for the proportional hazards model under informative censoring," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 224-234.
    17. M. Pardo, 2011. "Comments on: Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 54-57, May.
    18. Chin-Shang Li & Minggen Lu, 2018. "A lack-of-fit test for generalized linear models via single-index techniques," Computational Statistics, Springer, vol. 33(2), pages 731-756, June.
    19. Yao, Bin & Wang, Lianming & He, Xin, 2016. "Semiparametric regression analysis of panel count data allowing for within-subject correlation," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 47-59.
    20. Degras, David, 2008. "Asymptotics for the nonparametric estimation of the mean function of a random process," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2976-2980, December.
    21. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    22. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    23. Lu, Minggen, 2010. "Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2528-2542, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:705-718. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) The email address of this maintainer does not seem to be valid anymore. Please ask Oxford University Press to update the entry or send us the correct email address or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.