IDEAS home Printed from
   My bibliography  Save this article

Automatic estimation of multivariate spectra via smoothing splines


  • Ori Rosen
  • David S. Stoffer


The classical method for estimating the spectral density of a multivariate time series is first to calculate the periodogram, and then to smooth it to obtain a consistent estimator. Typically, to ensure the estimate is positive definite, all the elements of the periodogram are smoothed the same way. There are, however, many situations for which different components of the spectral matrix have different degrees of smoothness. We propose a Bayesian approach that uses Markov chain Monte Carlo techniques to fit smoothing splines to each component, real and imaginary, of the Cholesky decomposition of the periodogram matrix. The spectral estimator is then obtained by reconstructing the spectral estimator from the smoothed Cholesky decomposition components. Our technique produces an automatically smoothed spectral matrix estimator along with samples from the posterior distributions of the parameters to facilitate inference. Copyright 2007, Oxford University Press.

Suggested Citation

  • Ori Rosen & David S. Stoffer, 2007. "Automatic estimation of multivariate spectra via smoothing splines," Biometrika, Biometrika Trust, vol. 94(2), pages 335-345.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:335-345

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
    2. Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
    3. Cadonna, Annalisa & Kottas, Athanasios & Prado, Raquel, 2017. "Bayesian mixture modeling for spectral density estimation," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 189-195.
    4. Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.
    5. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:335-345. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.