IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i2p313-334.html
   My bibliography  Save this article

Inference on fractal processes using multiresolution approximation

Author

Listed:
  • Kenneth Falconer
  • Carmen Fernández

Abstract

We consider Bayesian inference via Markov chain Monte Carlo for a variety of fractal Gaussian processes on the real line. These models have unknown parameters in the covariance matrix, requiring inversion of a new covariance matrix at each Markov chain Monte Carlo iteration. The processes have no suitable independence properties so this becomes computationally prohibitive. We surmount these difficulties by developing a computational algorithm for likelihood evaluation based on a 'multiresolution approximation' to the original process. The method is computationally very efficient and widely applicable, making likelihood-based inference feasible for large datasets. A simulation study indicates that this approach leads to accurate estimates for underlying parameters in fractal models, including fractional Brownian motion and fractional Gaussian noise, and functional parameters in the recently introduced multifractional Brownian motion. We apply the method to a variety of real datasets and illustrate its application to prediction and to model selection. Copyright 2007, Oxford University Press.

Suggested Citation

  • Kenneth Falconer & Carmen Fernández, 2007. "Inference on fractal processes using multiresolution approximation," Biometrika, Biometrika Trust, vol. 94(2), pages 313-334.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:313-334
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm025
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(03), pages 443-518, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:313-334. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.