IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i1p101-118.html
   My bibliography  Save this article

A generalized threshold mixed model for analyzing nonnormal nonlinear time series, with application to plague in Kazakhstan

Author

Listed:
  • Noelle I. Samia
  • Kung-Sik Chan
  • Nils Chr. Stenseth

Abstract

We introduce the generalized threshold mixed model for piecewise-linear stochastic regression with possibly nonnormal time-series data. It is assumed that the conditional probability distribution of the response variable belongs to the exponential family, and the conditional mean response is linked to some piecewise-linear stochastic regression function. We study the particular case where the response variable equals zero in the lower regime. Some large-sample properties of a likelihood-based estimation scheme are derived. Our approach is motivated by the need for modelling nonlinearity in serially correlated epizootic events. Data coming from monitoring conducted in a natural plague focus in Kazakhstan are used to illustrate this model by obtaining biologically meaningful conclusions regarding the threshold relationship between prevalence of plague and some covariates including past abundance of great gerbils and other climatic variables. Copyright 2007, Oxford University Press.

Suggested Citation

  • Noelle I. Samia & Kung-Sik Chan & Nils Chr. Stenseth, 2007. "A generalized threshold mixed model for analyzing nonnormal nonlinear time series, with application to plague in Kazakhstan," Biometrika, Biometrika Trust, vol. 94(1), pages 101-118.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:1:p:101-118
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm006
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, K.Y.K. & Li, W.K., 2015. "Double Generalized Threshold Models with constraint on the dispersion by the mean," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 59-73.
    2. Tong, Howell, 2015. "Threshold models in time series analysis—Some reflections," Journal of Econometrics, Elsevier, vol. 189(2), pages 485-491.
    3. Andrew Hodge & Sriram Shankar, 2016. "Single-Variable Threshold Effects in Ordered Response Models With an Application to Estimating the Income-Happiness Gradient," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 42-52, January.
    4. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:1:p:101-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.