IDEAS home Printed from
   My bibliography  Save this article

Bayesian empirical likelihood


  • Nicole A. Lazar


Research has shown that empirical likelihood tests have many of the same asymptotic properties as those derived from parametric likelihoods. This leads naturally to the possibility of using empirical likelihood as the basis for Bayesian inference. Different ways in which this goal might be accomplished are considered. The validity of the resultant posterior inferences is examined, as are frequentist properties of the Bayesian empirical likelihood intervals. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:319-326

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
    2. Kai-Tai Fang & Rahul Mukerjee, 2006. "Empirical-type likelihoods allowing posterior credible sets with frequentist validity: Higher-order asymptotics," Biometrika, Biometrika Trust, vol. 93(3), pages 723-733, September.
    3. repec:bla:jorssb:v:79:y:2017:i:1:p:293-320 is not listed on IDEAS
    4. Rahul Mukerjee & Ling-Yau Chan, 2009. "Confidence intervals based on empirical statistics: existence of a probability matching prior and connection with frequentist Bartlett adjustability," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 271-282, August.
    5. J. N. K. Rao & Changbao Wu, 2010. "Bayesian pseudo-empirical-likelihood intervals for complex surveys," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 533-544.
    6. Albert Vexler & Wan-Min Tsai & Alan D. Hutson, 2014. "A Simple Density-Based Empirical Likelihood Ratio Test for Independence," The American Statistician, Taylor & Francis Journals, vol. 68(3), pages 158-169, February.
    7. Ventura, Laura & Racugno, Walter, 2012. "On interval and point estimators based on a penalization of the modified profile likelihood," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1285-1289.
    8. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    9. repec:eee:macchp:v2-527 is not listed on IDEAS
    10. Chang, In Hong & Mukerjee, Rahul, 2008. "Matching posterior and frequentist cumulative distribution functions with empirical-type likelihoods in the multiparameter case," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2793-2797, November.
    11. Lin, Lu & Tan, Lin, 2008. "Proper Bayesian estimating equation based on Hilbert space method," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1119-1127, July.
    12. Lehmann, Bruce N., 2009. "The role of beliefs in inference for rational expectations models," Journal of Econometrics, Elsevier, vol. 150(2), pages 322-331, June.
    13. Albert Vexler & Young Min Kim & Jihnhee Yu & Nicole A. Lazar & Alan D. Hutson, 2014. "Computing Critical Values of Exact Tests by Incorporating Monte Carlo Simulations Combined with Statistical Tables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1013-1030, December.
    14. In Hong Chang & Rahul Mukerjee, 2008. "Bayesian and frequentist confidence intervals arising from empirical-type likelihoods," Biometrika, Biometrika Trust, vol. 95(1), pages 139-147.
    15. repec:ags:stataj:259860 is not listed on IDEAS
    16. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, Elsevier.
    17. In Chang & Rahul Mukerjee, 2012. "On the approximate frequentist validity of the posterior quantiles of a parametric function: results based on empirical and related likelihoods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 156-169, March.
    18. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    19. Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:319-326. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.