IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i3p661-675..html
   My bibliography  Save this article

Generalized instrumental inequalities: testing the instrumental variable independence assumption

Author

Listed:
  • Désiré Kédagni
  • Ismael Mourifié

Abstract

SummaryThis paper proposes a new set of testable implications for the instrumental variable independence assumption for discrete treatment, but unrestricted outcome and instruments: generalized instrumental inequalities. When outcome and treatment are both binary, but instruments are unrestricted, we show that the generalized instrumental inequalities are necessary and sufficient to detect all observable violations of the instrumental variable independence assumption. To test the generalized instrumental inequalities, we propose an approach combining a sample splitting procedure and an inference method for intersection bounds. This idea allows one to easily implement the test using existing Stata packages. We apply our proposed strategy to assess the validity of the instrumental variable independence assumption for various instruments used in the returns to college literature.

Suggested Citation

  • Désiré Kédagni & Ismael Mourifié, 2020. "Generalized instrumental inequalities: testing the instrumental variable independence assumption," Biometrika, Biometrika Trust, vol. 107(3), pages 661-675.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:661-675.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    2. Shengjie Hong & Yu-Chin Hsu & Yuanyuan Wan, 2023. "Subvector inference for Varying Coefficient Models with Partial Identification," Working Papers tecipa-756, University of Toronto, Department of Economics.
    3. Kyunghoon Ban & Désiré Kédagni, 2022. "Nonparametric bounds on treatment effects with imperfect instruments [Instrument-based estimation with binarized treatments: Issues and tests for the exclusion restriction]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 477-493.
    4. Lixiong Li & Désiré Kédagni & Ismaël Mourifié, 2024. "Discordant relaxations of misspecified models," Quantitative Economics, Econometric Society, vol. 15(2), pages 331-379, May.
    5. Leonard Goff, 2024. "When does IV identification not restrict outcomes?," Papers 2406.02835, arXiv.org, revised Sep 2024.
    6. Chaoran Chen & Zhigang Feng & Jiaying Gu, 2022. "Health, Health Insurance, and Inequality," Working Papers tecipa-730, University of Toronto, Department of Economics.
    7. Zhewen Pan & Zhengxin Wang & Junsen Zhang & Yahong Zhou, 2024. "Marginal treatment effects in the absence of instrumental variables," Papers 2401.17595, arXiv.org, revised Aug 2024.
    8. Zhenting Sun & Kaspar Wuthrich, 2022. "Pairwise Valid Instruments," Papers 2203.08050, arXiv.org, revised Jan 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:661-675.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.