IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i3p527-543..html
   My bibliography  Save this article

Maximum empirical likelihood estimation for abundance in a closed population from capture-recapture data

Author

Listed:
  • Yukun Liu
  • Pengfei Li
  • Jing Qin

Abstract

SummaryCapture-recapture experiments are widely used to collect data needed for estimating the abundance of a closed population. To account for heterogeneity in the capture probabilities, Huggins (1989) and Alho (1990) proposed a semiparametric model in which the capture probabilities are modelled parametrically and the distribution of individual characteristics is left unspecified. A conditional likelihood method was then proposed to obtain point estimates and Wald-type confidence intervals for the abundance. Empirical studies show that the small-sample distribution of the maximum conditional likelihood estimator is strongly skewed to the right, which may produce Wald-type confidence intervals with lower limits that are less than the number of captured individuals or even are negative. In this paper, we propose a full empirical likelihood approach based on Huggins and Alho’s model. We show that the null distribution of the empirical likelihood ratio for the abundance is asymptotically chi-squared with one degree of freedom, and that the maximum empirical likelihood estimator achieves semiparametric efficiency. Simulation studies show that the empirical likelihood-based method is superior to the conditional likelihood-based method: its confidence interval has much better coverage, and the maximum empirical likelihood estimator has a smaller mean square error. We analyse three datasets to illustrate the advantages of our empirical likelihood approach.

Suggested Citation

  • Yukun Liu & Pengfei Li & Jing Qin, 2017. "Maximum empirical likelihood estimation for abundance in a closed population from capture-recapture data," Biometrika, Biometrika Trust, vol. 104(3), pages 527-543.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:527-543.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx038
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Yukun Liu & Yan Fan & Han Geng, 2018. "Likelihood ratio confidence interval for the abundance under binomial detectability models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 549-568, July.
    2. Mengke Li & Yukun Liu & Pengfei Li & Jing Qin, 2022. "Empirical likelihood meta-analysis with publication bias correction under Copas-like selection model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 93-112, February.
    3. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    4. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:527-543.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.