IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i1p21-34..html
   My bibliography  Save this article

High-dimensional classification via nonparametric empirical Bayes and maximum likelihood inference

Author

Listed:
  • Lee H. Dicker
  • Sihai D. Zhao

Abstract

We propose new nonparametric empirical Bayes methods for high-dimensional classification. Our classifiers are designed to approximate the Bayes classifier in a hypothesized hierarchical model, where the prior distributions for the model parameters are estimated nonparametrically from the training data. As is common with nonparametric empirical Bayes, the proposed classifiers are effective in high-dimensional settings even when the underlying model parameters are in fact nonrandom. We use nonparametric maximum likelihood estimates of the prior distributions, following the elegant approach studied by Kiefer & Wolfowitz in the 1950s. However, our implementation is based on a recent convex optimization framework for approximating these estimates that is well-suited for large-scale problems. We derive new theoretical results on the accuracy of the approximate estimator, which help control the misclassification rate of one of our classifiers. We show that our methods outperform several existing methods in simulations and perform well when gene expression microarray data is used to classify cancer patients.

Suggested Citation

  • Lee H. Dicker & Sihai D. Zhao, 2016. "High-dimensional classification via nonparametric empirical Bayes and maximum likelihood inference," Biometrika, Biometrika Trust, vol. 103(1), pages 21-34.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:21-34.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv067
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mike Gilraine & Jiaying Gu & Robert McMillan, 2022. "A Nonparametric Approach for Studying Teacher Impacts," Working Papers tecipa-716, University of Toronto, Department of Economics.
    2. Michael Gilraine & Jiaying Gu & Robert McMillan, 2020. "A New Method for Estimating Teacher Value-Added," NBER Working Papers 27094, National Bureau of Economic Research, Inc.
    3. Michael Gilraine & Jiaying Gu & Robert McMillan, 2021. "A Nonparametric Method for Estimating Teacher Value-Added," Working Papers tecipa-689, University of Toronto, Department of Economics.
    4. Feng, Long & Dicker, Lee H., 2018. "Approximate nonparametric maximum likelihood for mixture models: A convex optimization approach to fitting arbitrary multivariate mixing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 80-91.
    5. Park, Hoyoung & Baek, Seungchul & Park, Junyong, 2022. "High-dimensional linear discriminant analysis using nonparametric methods," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:21-34.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.