Author
Listed:
- Marjorie May Dixon
- Gerald G Carter
- Michael J Ryan
- Rachel A Page
Abstract
To forage efficiently, animals should selectively attend to and remember the cues of food that best predict future meals. One hypothesis is that animals with different foraging strategies should vary in their reliance on spatial versus feature cues. Specifically, animals that store food in dispersed caches or that feed on spatially stable food, such as fruits or flowers, should be relatively biased towards learning a meal’s location, whereas predators that hunt mobile prey should instead be relatively biased towards learning feature cues such as odor or sound. Several authors have predicted that nectar-feeding and fruit-feeding bats would rely relatively more on spatial cues, whereas closely related predatory bats would rely more on feature cues, yet no experiment has compared these two foraging strategies under the same conditions. To test this hypothesis, we compared learning in the frugivorous bat, Artibeus jamaicensis, and the predatory bat, Lophostoma silvicolum, which hunts katydids using acoustic cues. We trained bats to find food paired with a unique and novel odor, sound, and location. To assess which cues each bat had learned, we then dissociated these cues to create conflicting information. Rather than finding that the frugivore and predator clearly differ in their relative reliance on spatial versus feature cues, we found that both species used spatial cues over sounds or odors in subsequent foraging decisions. We interpret these results alongside past findings on how foraging animals use spatial cues versus feature cues, and explore why spatial cues may be fundamentally more rich, salient, or memorable.
Suggested Citation
Marjorie May Dixon & Gerald G Carter & Michael J Ryan & Rachel A Page, 2023.
"Spatial learning overshadows learning novel odors and sounds in both predatory and frugivorous bats,"
Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 325-333.
Handle:
RePEc:oup:beheco:v:34:y:2023:i:3:p:325-333.
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:34:y:2023:i:3:p:325-333.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.