IDEAS home Printed from
   My bibliography  Save this article

Measuring Price Risk in Rating Revenue Coverage: BS or No BS?


  • Barry K Goodwin
  • Ardian Harri
  • Roderick M Rejesus
  • Keith H Coble


The Black-Scholes (BS) option pricing model has been a cornerstone of modern financial theories since its introduction by Black and Scholes (1973) and its subsequent refinement by Merton (1973). The model has realized widespread adoption for a number of purposes. Inherent in the model are a number of assumptions. An important and potentially restrictive assumption is that the underlying asset price is log–normally distributed. Among the many diverse uses of the BS model, the model and underlying theory are used to derive measurements of the variance of expected (harvest-time) prices for use in rating revenue coverage in the federal crop insurance program. Revenue coverage currently accounts for about 80% of the total liability insured in the program. This liability frequently exceeds $100 billion and thus the accuracy of revenue premium rates is of vital importance. The use of the BS model by the Risk Management Agency (RMA) of the USDA has been the focus of recent criticisms of the program. Critics have argued in favor of retrospective measures of price variability that are based on historical price movements or have recommended other approaches to measuring price risk. This article reports on a contracted review of revenue insurance rating methodology commissioned by RMA. We evaluate a number of alternative approaches to measuring expected price variability, including several approaches recommended by critics of the federal program. Our results suggest that the BS model is preferred to recommended alternatives on the basis of numerous criteria.

Suggested Citation

  • Barry K Goodwin & Ardian Harri & Roderick M Rejesus & Keith H Coble, 2018. "Measuring Price Risk in Rating Revenue Coverage: BS or No BS?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 456-478.
  • Handle: RePEc:oup:ajagec:v:100:y:2018:i:2:p:456-478.

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:100:y:2018:i:2:p:456-478.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.