Author
Listed:
- Calum Gabbutt
(Institute of Cancer Research
Imperial College London
Queen Mary University of London)
- Martí Duran-Ferrer
(Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS)
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC))
- Heather E. Grant
(Institute of Cancer Research)
- Diego Mallo
(Arizona State University)
- Ferran Nadeu
(Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS)
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC))
- Jacob Househam
(Institute of Cancer Research
Queen Mary University of London)
- Neus Villamor
(Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS)
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
Hospital Clínic de Barcelona)
- Madlen Müller
(Centro Nacional de Analisis Genomico (CNAG))
- Simon Heath
(Centro Nacional de Analisis Genomico (CNAG))
- Emanuele Raineri
(Centro Nacional de Analisis Genomico (CNAG))
- Olga Krali
(Uppsala University)
- Jessica Nordlund
(Uppsala University)
- Thorsten Zenz
(University Hospital and University of Zürich
Medical Research Center)
- Ivo G. Gut
(Centro Nacional de Analisis Genomico (CNAG)
Universitat de Barcelona)
- Elias Campo
(Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS)
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
Hospital Clínic de Barcelona
Universitat de Barcelona)
- Armando Lopez-Guillermo
(Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS)
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
Hospital Clínic de Barcelona)
- Jude Fitzgibbon
(Queen Mary University of London)
- Chris P. Barnes
(University College London)
- Darryl Shibata
(University of Southern California)
- José I. Martin-Subero
(Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS)
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
Universitat de Barcelona
Institució Catalana de Recerca i Estudis Avançats (ICREA))
- Trevor A. Graham
(Institute of Cancer Research
Queen Mary University of London)
Abstract
Cancer development and response to treatment are evolutionary processes1,2, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging3. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time4, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types. We measure that subclonal selection occurs only infrequently within bulk samples and detect occasional examples of multiple independent primary tumours. Clinically, we observe faster initial tumour growth in more aggressive disease subtypes, and that evolutionary histories are strong independent prognostic factors in two series of chronic lymphocytic leukaemia. Using EVOFLUx for phylogenetic analyses of aggressive Richter-transformed chronic lymphocytic leukaemia samples detected that the seed of the transformed clone existed decades before presentation. Orthogonal verification of EVOFLUx inferences is provided using additional genetic data, including long-read nanopore sequencing, and clinical variables. Collectively, we show how widely available, low-cost bulk DNA methylation data precisely measure cancer evolutionary dynamics, and provides new insights into cancer biology and clinical behaviour.
Suggested Citation
Calum Gabbutt & Martí Duran-Ferrer & Heather E. Grant & Diego Mallo & Ferran Nadeu & Jacob Househam & Neus Villamor & Madlen Müller & Simon Heath & Emanuele Raineri & Olga Krali & Jessica Nordlund & T, 2025.
"Fluctuating DNA methylation tracks cancer evolution at clinical scale,"
Nature, Nature, vol. 645(8081), pages 764-773, September.
Handle:
RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09374-4
DOI: 10.1038/s41586-025-09374-4
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09374-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.