Author
Abstract
Realizing universal fault-tolerant quantum computation is a key goal in quantum information science1–4. By encoding quantum information into logical qubits using quantum error correcting codes, physical errors can be detected and corrected, enabling a substantial reduction in logical error rates5–11. However, the set of logical operations that can be easily implemented on these encoded qubits is often constrained1,12, necessitating the use of special resource states known as ‘magic states’13 to implement universal, classically hard circuits14. A key method to prepare high-fidelity magic states is to perform ‘distillation’, creating them from multiple lower-fidelity inputs13,15. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach uses a dynamically reconfigurable architecture8,16 to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d = 3 and d = 5 colour codes, observing improvements in the logical fidelity of the output magic states compared with the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation and represent an important step towards large-scale logical quantum processors.
Suggested Citation
Pedro Sales Rodriguez & John M. Robinson & Paul Niklas Jepsen & Zhiyang He & Casey Duckering & Chen Zhao & Kai-Hsin Wu & Joseph Campo & Kevin Bagnall & Minho Kwon & Thomas Karolyshyn & Phillip Weinber, 2025.
"Experimental demonstration of logical magic state distillation,"
Nature, Nature, vol. 645(8081), pages 620-625, September.
Handle:
RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09367-3
DOI: 10.1038/s41586-025-09367-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09367-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.