IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v645y2025i8081d10.1038_s41586-025-09367-3.html
   My bibliography  Save this article

Experimental demonstration of logical magic state distillation

Author

Listed:
  • Pedro Sales Rodriguez

    (QuEra Computing)

  • John M. Robinson

    (QuEra Computing)

  • Paul Niklas Jepsen

    (QuEra Computing)

  • Zhiyang He

    (QuEra Computing
    Massachusetts Institute of Technology)

  • Casey Duckering

    (QuEra Computing)

  • Chen Zhao

    (QuEra Computing)

  • Kai-Hsin Wu

    (QuEra Computing)

  • Joseph Campo

    (QuEra Computing)

  • Kevin Bagnall

    (QuEra Computing)

  • Minho Kwon

    (QuEra Computing)

  • Thomas Karolyshyn

    (QuEra Computing)

  • Phillip Weinberg

    (QuEra Computing)

  • Madelyn Cain

    (Harvard University)

  • Simon J. Evered

    (Harvard University)

  • Alexandra A. Geim

    (Harvard University)

  • Marcin Kalinowski

    (Harvard University)

  • Sophie H. Li

    (Harvard University)

  • Tom Manovitz

    (Harvard University)

  • Jesse Amato-Grill

    (QuEra Computing)

  • James I. Basham

    (QuEra Computing)

  • Liane Bernstein

    (QuEra Computing)

  • Boris Braverman

    (QuEra Computing)

  • Alexei Bylinskii

    (QuEra Computing)

  • Adam Choukri

    (QuEra Computing)

  • Robert J. DeAngelo

    (QuEra Computing)

  • Fang Fang

    (QuEra Computing)

  • Connor Fieweger

    (QuEra Computing)

  • Paige Frederick

    (QuEra Computing)

  • David Haines

    (QuEra Computing)

  • Majd Hamdan

    (QuEra Computing)

  • Julian Hammett

    (QuEra Computing)

  • Ning Hsu

    (QuEra Computing)

  • Ming-Guang Hu

    (QuEra Computing)

  • Florian Huber

    (QuEra Computing)

  • Ningyuan Jia

    (QuEra Computing)

  • Dhruv Kedar

    (QuEra Computing)

  • Milan Kornjača

    (QuEra Computing)

  • Fangli Liu

    (QuEra Computing)

  • John Long

    (QuEra Computing)

  • Jonathan Lopatin

    (QuEra Computing)

  • Pedro L. S. Lopes

    (QuEra Computing)

  • Xiu-Zhe Luo

    (QuEra Computing)

  • Tommaso Macrì

    (QuEra Computing)

  • Ognjen Marković

    (QuEra Computing)

  • Luis A. Martínez-Martínez

    (QuEra Computing)

  • Xianmei Meng

    (QuEra Computing)

  • Stefan Ostermann

    (QuEra Computing)

  • Evgeny Ostroumov

    (QuEra Computing)

  • David Paquette

    (QuEra Computing)

  • Zexuan Qiang

    (QuEra Computing)

  • Vadim Shofman

    (QuEra Computing)

  • Anshuman Singh

    (QuEra Computing)

  • Manuj Singh

    (QuEra Computing)

  • Nandan Sinha

    (QuEra Computing)

  • Henry Thoreen

    (QuEra Computing)

  • Noel Wan

    (QuEra Computing)

  • Yiping Wang

    (QuEra Computing)

  • Daniel Waxman-Lenz

    (QuEra Computing)

  • Tak Wong

    (QuEra Computing)

  • Jonathan Wurtz

    (QuEra Computing)

  • Andrii Zhdanov

    (QuEra Computing)

  • Laurent Zheng

    (QuEra Computing)

  • Markus Greiner

    (Harvard University)

  • Alexander Keesling

    (QuEra Computing)

  • Nathan Gemelke

    (QuEra Computing)

  • Vladan Vuletić

    (Massachusetts Institute of Technology)

  • Takuya Kitagawa

    (QuEra Computing)

  • Sheng-Tao Wang

    (QuEra Computing)

  • Dolev Bluvstein

    (Harvard University)

  • Mikhail D. Lukin

    (Harvard University)

  • Alexander Lukin

    (QuEra Computing)

  • Hengyun Zhou

    (QuEra Computing)

  • Sergio H. Cantú

    (QuEra Computing)

Abstract

Realizing universal fault-tolerant quantum computation is a key goal in quantum information science1–4. By encoding quantum information into logical qubits using quantum error correcting codes, physical errors can be detected and corrected, enabling a substantial reduction in logical error rates5–11. However, the set of logical operations that can be easily implemented on these encoded qubits is often constrained1,12, necessitating the use of special resource states known as ‘magic states’13 to implement universal, classically hard circuits14. A key method to prepare high-fidelity magic states is to perform ‘distillation’, creating them from multiple lower-fidelity inputs13,15. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach uses a dynamically reconfigurable architecture8,16 to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d = 3 and d = 5 colour codes, observing improvements in the logical fidelity of the output magic states compared with the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation and represent an important step towards large-scale logical quantum processors.

Suggested Citation

  • Pedro Sales Rodriguez & John M. Robinson & Paul Niklas Jepsen & Zhiyang He & Casey Duckering & Chen Zhao & Kai-Hsin Wu & Joseph Campo & Kevin Bagnall & Minho Kwon & Thomas Karolyshyn & Phillip Weinber, 2025. "Experimental demonstration of logical magic state distillation," Nature, Nature, vol. 645(8081), pages 620-625, September.
  • Handle: RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09367-3
    DOI: 10.1038/s41586-025-09367-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-025-09367-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-025-09367-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09367-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.