Author
Listed:
- Patrick Kaifosh
(Reality Labs at Meta)
- Thomas R. Reardon
(Reality Labs at Meta)
Abstract
Since the advent of computing, humans have sought computer input technologies that are expressive, intuitive and universal. While diverse modalities have been developed, including keyboards, mice and touchscreens, they require interaction with a device that can be limiting, especially in on-the-go scenarios. Gesture-based systems use cameras or inertial sensors to avoid an intermediary device, but tend to perform well only for unobscured movements. By contrast, brain–computer or neuromotor interfaces that directly interface with the body’s electrical signalling have been imagined to solve the interface problem1, but high-bandwidth communication has been demonstrated only using invasive interfaces with bespoke decoders designed for single individuals2–4. Here, we describe the development of a generic non-invasive neuromotor interface that enables computer input decoded from surface electromyography (sEMG). We developed a highly sensitive, easily donned sEMG wristband and a scalable infrastructure for collecting training data from thousands of consenting participants. Together, these data enabled us to develop generic sEMG decoding models that generalize across people. Test users demonstrate a closed-loop median performance of gesture decoding of 0.66 target acquisitions per second in a continuous navigation task, 0.88 gesture detections per second in a discrete-gesture task and handwriting at 20.9 words per minute. We demonstrate that the decoding performance of handwriting models can be further improved by 16% by personalizing sEMG decoding models. To our knowledge, this is the first high-bandwidth neuromotor interface with performant out-of-the-box generalization across people.
Suggested Citation
Patrick Kaifosh & Thomas R. Reardon, 2025.
"A generic non-invasive neuromotor interface for human-computer interaction,"
Nature, Nature, vol. 645(8081), pages 702-711, September.
Handle:
RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09255-w
DOI: 10.1038/s41586-025-09255-w
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09255-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.