IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v644y2025i8076d10.1038_s41586-025-09308-0.html
   My bibliography  Save this article

Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer

Author

Listed:
  • Xiang Zhang

    (University of Basel
    National Center of Competence in Research ‘Molecular Systems Engineering’)

  • Dongping Chen

    (University of Basel
    National Center of Competence in Research ‘Molecular Systems Engineering’)

  • María Álvarez

    (University of Basel)

  • Thomas R. Ward

    (University of Basel
    National Center of Competence in Research ‘Molecular Systems Engineering’)

Abstract

Transition metal–hydrides have been widely exploited in catalysis for the hydrofunctionalization of unsaturated moieties, including carbonyls, alkenes and alkynes1. To complement heterolytic metal–hydride bond cleavage, metal–hydride hydrogen atom transfer (MHAT) has recently gained attention, as a promising strategy for radical hydrofunctionalization of unactivated alkenes2, thus enabling late-stage diversification of complex molecules3,4. However, owing to the weak interactions between the prochiral organic radical and the enantiopure catalyst5, asymmetric MHAT6 remains challenging. Here we show that cytochrome P450 enzymes (CYPs) can be repurposed to catalyse asymmetric MHAT, a new-to-nature reaction. Directed evolution of P450BM3 yielded a triple mutant that catalyses MHAT radical cyclization of unactivated alkenes, producing diverse cyclic compounds—including pyrrolidines and piperidines—with up to 98:2 enantiomeric ratio under aerobic whole-cell conditions. Apart from electron-deficient alkenes, alternative radical acceptors—including hydrazones, oximes and nitriles—were converted by repurposed P450BM3 to enantioenriched cyclization products. Mechanistic investigations support an MHAT mechanism proceeding by homolytic cleavage of a fleeting iron(III)–hydride species2,6. Starting from CYP119, directed evolution afforded a stereocomplementary MHATase, highlighting the potential of repurposed CYPs for MHAT biocatalysis. Our study highlights the prospect of integrating homolytic metal–hydride reactivity into metalloenzymes, thus expanding the scope of asymmetric radical biocatalysis.

Suggested Citation

  • Xiang Zhang & Dongping Chen & María Álvarez & Thomas R. Ward, 2025. "Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer," Nature, Nature, vol. 644(8076), pages 381-390, August.
  • Handle: RePEc:nat:nature:v:644:y:2025:i:8076:d:10.1038_s41586-025-09308-0
    DOI: 10.1038/s41586-025-09308-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-025-09308-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-025-09308-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:644:y:2025:i:8076:d:10.1038_s41586-025-09308-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.