IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v644y2025i8075d10.1038_s41586-025-09323-1.html
   My bibliography  Save this article

Coherent spectroscopy with a single antiproton spin

Author

Listed:
  • B. M. Latacz

    (CERN
    RIKEN)

  • S. R. Erlewein

    (CERN
    Heinrich-Heine-Universität Düsseldorf
    Max-Planck-Institut für Kernphysik)

  • M. Fleck

    (RIKEN
    University of Tokyo)

  • J. I. Jäger

    (CERN
    Max-Planck-Institut für Kernphysik)

  • F. Abbass

    (Heinrich-Heine-Universität Düsseldorf)

  • B. P. Arndt

    (Max-Planck-Institut für Kernphysik
    GSI Helmholtzzentrum für Schwerionenforschung GmbH)

  • P. Geissler

    (RIKEN)

  • T. Imamura

    (Leibniz Universität Hannover
    Physikalisch-Technische Bundesanstalt)

  • M. Leonhardt

    (Heinrich-Heine-Universität Düsseldorf)

  • P. Micke

    (CERN
    Max-Planck-Institut für Kernphysik)

  • A. Mooser

    (Max-Planck-Institut für Kernphysik)

  • D. Schweitzer

    (Heinrich-Heine-Universität Düsseldorf)

  • F. Voelksen

    (Heinrich-Heine-Universität Düsseldorf)

  • E. Wursten

    (RIKEN)

  • H. Yildiz

    (Johannes Gutenberg-Universität Mainz)

  • K. Blaum

    (Max-Planck-Institut für Kernphysik)

  • J. A. Devlin

    (CERN
    Imperial College London)

  • Y. Matsuda

    (University of Tokyo)

  • C. Ospelkaus

    (Leibniz Universität Hannover
    Physikalisch-Technische Bundesanstalt)

  • W. Quint

    (GSI Helmholtzzentrum für Schwerionenforschung GmbH)

  • A. Soter

    (ETH Zürich)

  • J. Walz

    (Johannes Gutenberg-Universität Mainz
    Johannes Gutenberg-Universität Mainz)

  • Y. Yamazaki

    (RIKEN)

  • C. Smorra

    (Heinrich-Heine-Universität Düsseldorf)

  • S. Ulmer

    (RIKEN
    Heinrich-Heine-Universität Düsseldorf)

Abstract

Coherent quantum transition spectroscopy is a powerful tool in metrology1, quantum information processing2, magnetometry3 and precision tests of the standard model4. It was applied with great success in proton and deuteron magnetic moment measurements5, which culminated in maser spectroscopy with sub-parts-per-trillion resolution6 and many other experiments at the forefront of physics7. All of these experiments were performed on macroscopic ensembles of particles, whereas the coherent spectroscopy of a ‘free’ single nuclear spin has, to our knowledge, never been reported before. Here we demonstrate coherent quantum transition spectroscopy of the spin of a single antiproton stored in a cryogenic Penning-trap system. We apply a multi-trap technique8, detect the antiproton spin state using the continuous Stern–Gerlach effect9 and transport the particle to the homogeneous magnetic field of a precision trap (PT). Here we induce the coherent dynamics and analyse the result by quantum-projection measurements in the analysis trap (AT)10. We observe, for the first time, Rabi oscillations of an antiproton spin and achieve in time-series measurements spin-inversion probabilities greater than 80% at spin coherence times of about 50 s. Scans of single-particle spin resonances show inversions greater than 70%, at transition linewidths 16 times narrower than in previous measurements8, limited by cyclotron frequency measurement decoherence. This achievement marks a notable step towards at least tenfold improved tests of matter/antimatter symmetry using proton and antiproton magnetic moments.

Suggested Citation

  • B. M. Latacz & S. R. Erlewein & M. Fleck & J. I. Jäger & F. Abbass & B. P. Arndt & P. Geissler & T. Imamura & M. Leonhardt & P. Micke & A. Mooser & D. Schweitzer & F. Voelksen & E. Wursten & H. Yildiz, 2025. "Coherent spectroscopy with a single antiproton spin," Nature, Nature, vol. 644(8075), pages 64-68, August.
  • Handle: RePEc:nat:nature:v:644:y:2025:i:8075:d:10.1038_s41586-025-09323-1
    DOI: 10.1038/s41586-025-09323-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-025-09323-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-025-09323-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:644:y:2025:i:8075:d:10.1038_s41586-025-09323-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.