Author
Listed:
- M. V. Larsen
(Xanadu Quantum Technologies Inc.)
- J. E. Bourassa
(Xanadu Quantum Technologies Inc.)
- S. Kocsis
(Xanadu Quantum Technologies Inc.)
- J. F. Tasker
(Xanadu Quantum Technologies Inc.)
- R. S. Chadwick
(Xanadu Quantum Technologies Inc.)
- C. González-Arciniegas
(Xanadu Quantum Technologies Inc.)
- J. Hastrup
(Xanadu Quantum Technologies Inc.)
- C. E. Lopetegui-González
(Xanadu Quantum Technologies Inc.)
- F. M. Miatto
(Xanadu Quantum Technologies Inc.)
- A. Motamedi
(Xanadu Quantum Technologies Inc.)
- R. Noro
(Xanadu Quantum Technologies Inc.)
- G. Roeland
(Xanadu Quantum Technologies Inc.)
- R. Baby
(Xanadu Quantum Technologies Inc.)
- H. Chen
(Xanadu Quantum Technologies Inc.)
- P. Contu
(Xanadu Quantum Technologies Inc.)
- I. Luch
(Xanadu Quantum Technologies Inc.)
- C. Drago
(Xanadu Quantum Technologies Inc.)
- M. Giesbrecht
(Xanadu Quantum Technologies Inc.)
- T. Grainge
(Xanadu Quantum Technologies Inc.)
- I. Krasnokutska
(Xanadu Quantum Technologies Inc.)
- M. Menotti
(Xanadu Quantum Technologies Inc.)
- B. Morrison
(Xanadu Quantum Technologies Inc.)
- C. Puviraj
(Xanadu Quantum Technologies Inc.)
- K. Rezaei Shad
(Xanadu Quantum Technologies Inc.)
- B. Hussain
(Xanadu Quantum Technologies Inc.)
- J. McMahon
(Xanadu Quantum Technologies Inc.)
- J. E. Ortmann
(Xanadu Quantum Technologies Inc.)
- M. J. Collins
(Xanadu Quantum Technologies Inc.)
- C. Ma
(Xanadu Quantum Technologies Inc.)
- D. S. Phillips
(Xanadu Quantum Technologies Inc.)
- M. Seymour
(Xanadu Quantum Technologies Inc.)
- Q. Y. Tang
(Xanadu Quantum Technologies Inc.)
- B. Yang
(Xanadu Quantum Technologies Inc.)
- Z. Vernon
(Xanadu Quantum Technologies Inc.)
- R. N. Alexander
(Xanadu Quantum Technologies Inc.)
- D. H. Mahler
(Xanadu Quantum Technologies Inc.)
Abstract
Building a useful photonic quantum computer requires robust techniques to synthesize optical states that can encode qubits. Gottesman–Kitaev–Preskill (GKP) states1 offer one of the most attractive classes of such qubit encodings, as they enable the implementation of universal gate sets with straightforward, deterministic and room temperature-compatible Gaussian operations2. Existing pioneering demonstrations generating optical GKP states3 and other complex non-Gaussian states4–11 have relied on free-space optical components, hindering the scaling eventually required for a utility-scale system. Here we use an ultra-low-loss integrated photonic chip fabricated on a customized multilayer silicon nitride 300-mm wafer platform, coupled over fibre with high-efficiency photon number resolving detectors, to generate GKP qubit states. These states show critical mode-level features necessary for fault tolerance, including at least four resolvable peaks in both p and q quadratures, and a clear lattice structure of negative Wigner function regions, in this case a 3 × 3 grid. We also show that our GKP states show sufficient structure to indicate that the devices used to make them could, after further reduction in optical losses, yield states for the fault-tolerant regime. This experiment validates a key pillar of bosonic architectures for photonic quantum computing2,12, paving the way for arrays of GKP sources that will supply future fault-tolerant machines.
Suggested Citation
M. V. Larsen & J. E. Bourassa & S. Kocsis & J. F. Tasker & R. S. Chadwick & C. González-Arciniegas & J. Hastrup & C. E. Lopetegui-González & F. M. Miatto & A. Motamedi & R. Noro & G. Roeland & R. Baby, 2025.
"Integrated photonic source of Gottesman–Kitaev–Preskill qubits,"
Nature, Nature, vol. 642(8068), pages 587-591, June.
Handle:
RePEc:nat:nature:v:642:y:2025:i:8068:d:10.1038_s41586-025-09044-5
DOI: 10.1038/s41586-025-09044-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:642:y:2025:i:8068:d:10.1038_s41586-025-09044-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.