Author
Listed:
- T. A. Cochran
(Google Research
Princeton University)
- B. Jobst
(Technical University of Munich
Munich Center for Quantum Science and Technology (MCQST))
- E. Rosenberg
(Google Research)
- Y. D. Lensky
(Google Research)
- G. Gyawali
(Google Research
Cornell University
Cornell University)
- N. Eassa
(Google Research
Purdue University)
- M. Will
(Technical University of Munich
Munich Center for Quantum Science and Technology (MCQST))
- A. Szasz
(Google Research)
- D. Abanin
(Google Research)
- R. Acharya
(Google Research)
- L. Aghababaie Beni
(Google Research)
- T. I. Andersen
(Google Research)
- M. Ansmann
(Google Research)
- F. Arute
(Google Research)
- K. Arya
(Google Research)
- A. Asfaw
(Google Research)
- J. Atalaya
(Google Research)
- R. Babbush
(Google Research)
- B. Ballard
(Google Research)
- J. C. Bardin
(Google Research
University of Massachusetts)
- A. Bengtsson
(Google Research)
- A. Bilmes
(Google Research)
- A. Bourassa
(Google Research)
- J. Bovaird
(Google Research)
- M. Broughton
(Google Research)
- D. A. Browne
(Google Research)
- B. Buchea
(Google Research)
- B. B. Buckley
(Google Research)
- T. Burger
(Google Research)
- B. Burkett
(Google Research)
- N. Bushnell
(Google Research)
- A. Cabrera
(Google Research)
- J. Campero
(Google Research)
- H.-S. Chang
(Google Research)
- Z. Chen
(Google Research)
- B. Chiaro
(Google Research)
- J. Claes
(Google Research)
- A. Y. Cleland
(Google Research)
- J. Cogan
(Google Research)
- R. Collins
(Google Research)
- P. Conner
(Google Research)
- W. Courtney
(Google Research)
- A. L. Crook
(Google Research)
- B. Curtin
(Google Research)
- S. Das
(Google Research)
- S. Demura
(Google Research)
- L. Lorenzo
(Google Research)
- A. Paolo
(Google Research)
- P. Donohoe
(Google Research)
- I. Drozdov
(Google Research
University of Connecticut)
- A. Dunsworth
(Google Research)
- A. Eickbusch
(Google Research)
- A. Moshe Elbag
(Google Research)
- M. Elzouka
(Google Research)
- C. Erickson
(Google Research)
- V. S. Ferreira
(Google Research)
- L. Flores Burgos
(Google Research)
- E. Forati
(Google Research)
- A. G. Fowler
(Google Research)
- B. Foxen
(Google Research)
- S. Ganjam
(Google Research)
- R. Gasca
(Google Research)
- É. Genois
(Google Research)
- W. Giang
(Google Research)
- D. Gilboa
(Google Research)
- R. Gosula
(Google Research)
- A. Grajales Dau
(Google Research)
- D. Graumann
(Google Research)
- A. Greene
(Google Research)
- J. A. Gross
(Google Research)
- S. Habegger
(Google Research)
- M. Hansen
(Google Research)
- M. P. Harrigan
(Google Research)
- S. D. Harrington
(Google Research)
- P. Heu
(Google Research)
- O. Higgott
(Google Research)
- J. Hilton
(Google Research)
- H.-Y. Huang
(Google Research)
- A. Huff
(Google Research)
- W. Huggins
(Google Research)
- E. Jeffrey
(Google Research)
- Z. Jiang
(Google Research)
- C. Jones
(Google Research)
- C. Joshi
(Google Research)
- P. Juhas
(Google Research)
- D. Kafri
(Google Research)
- H. Kang
(Google Research)
- A. H. Karamlou
(Google Research)
- K. Kechedzhi
(Google Research)
- T. Khaire
(Google Research)
- T. Khattar
(Google Research)
- M. Khezri
(Google Research)
- S. Kim
(Google Research)
- P. Klimov
(Google Research)
- B. Kobrin
(Google Research)
- A. Korotkov
(Google Research
University of California, Riverside)
- F. Kostritsa
(Google Research)
- J. Kreikebaum
(Google Research)
- V. Kurilovich
(Google Research)
- D. Landhuis
(Google Research)
- T. Lange-Dei
(Google Research)
- B. Langley
(Google Research)
- K.-M. Lau
(Google Research)
- J. Ledford
(Google Research)
- K. Lee
(Google Research)
- B. Lester
(Google Research)
- L. Guevel
(Google Research)
- W. Li
(Google Research)
- A. T. Lill
(Google Research)
- W. Livingston
(Google Research)
- A. Locharla
(Google Research)
- D. Lundahl
(Google Research)
- A. Lunt
(Google Research)
- S. Madhuk
(Google Research)
- A. Maloney
(Google Research)
- S. Mandrà
(Google Research)
- L. Martin
(Google Research)
- O. Martin
(Google Research)
- C. Maxfield
(Google Research)
- J. McClean
(Google Research)
- M. McEwen
(Google Research)
- S. Meeks
(Google Research)
- A. Megrant
(Google Research)
- K. Miao
(Google Research)
- R. Molavi
(Google Research)
- S. Molina
(Google Research)
- S. Montazeri
(Google Research)
- R. Movassagh
(Google Research)
- C. Neill
(Google Research)
- M. Newman
(Google Research)
- A. Nguyen
(Google Research)
- M. Nguyen
(Google Research)
- C.-H. Ni
(Google Research)
- K. Ottosson
(Google Research)
- A. Pizzuto
(Google Research)
- R. Potter
(Google Research)
- O. Pritchard
(Google Research)
- C. Quintana
(Google Research)
- G. Ramachandran
(Google Research)
- M. Reagor
(Google Research)
- D. Rhodes
(Google Research)
- G. Roberts
(Google Research)
- K. Sankaragomathi
(Google Research)
- K. Satzinger
(Google Research)
- H. Schurkus
(Google Research)
- M. Shearn
(Google Research)
- A. Shorter
(Google Research)
- N. Shutty
(Google Research)
- V. Shvarts
(Google Research)
- V. Sivak
(Google Research)
- S. Small
(Google Research)
- W. C. Smith
(Google Research)
- S. Springer
(Google Research)
- G. Sterling
(Google Research)
- J. Suchard
(Google Research)
- A. Sztein
(Google Research)
- D. Thor
(Google Research)
- M. Torunbalci
(Google Research)
- A. Vaishnav
(Google Research)
- J. Vargas
(Google Research)
- S. Vdovichev
(Google Research)
- G. Vidal
(Google Research)
- C. Vollgraff Heidweiller
(Google Research)
- S. Waltman
(Google Research)
- S. X. Wang
(Google Research)
- B. Ware
(Google Research)
- T. White
(Google Research)
- K. Wong
(Google Research)
- B. W. K. Woo
(Google Research)
- C. Xing
(Google Research)
- Z. Jamie Yao
(Google Research)
- P. Yeh
(Google Research)
- B. Ying
(Google Research)
- J. Yoo
(Google Research)
- N. Yosri
(Google Research)
- G. Young
(Google Research)
- A. Zalcman
(Google Research)
- Y. Zhang
(Google Research)
- N. Zhu
(Google Research)
- N. Zobrist
(Google Research)
- S. Boixo
(Google Research)
- J. Kelly
(Google Research)
- E. Lucero
(Google Research)
- Y. Chen
(Google Research)
- V. Smelyanskiy
(Google Research)
- H. Neven
(Google Research)
- A. Gammon-Smith
(University of Nottingham
University of Nottingham)
- F. Pollmann
(Technical University of Munich
Munich Center for Quantum Science and Technology (MCQST))
- M. Knap
(Technical University of Munich
Munich Center for Quantum Science and Technology (MCQST))
- P. Roushan
(Google Research)
Abstract
Lattice gauge theories (LGTs)1–4 can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials5–7. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits8–10. Here we investigate the dynamics of local excitations in a $${{\mathbb{Z}}}_{2}$$ Z 2 LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen11,12. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics.
Suggested Citation
T. A. Cochran & B. Jobst & E. Rosenberg & Y. D. Lensky & G. Gyawali & N. Eassa & M. Will & A. Szasz & D. Abanin & R. Acharya & L. Aghababaie Beni & T. I. Andersen & M. Ansmann & F. Arute & K. Arya & A, 2025.
"Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories,"
Nature, Nature, vol. 642(8067), pages 315-320, June.
Handle:
RePEc:nat:nature:v:642:y:2025:i:8067:d:10.1038_s41586-025-08999-9
DOI: 10.1038/s41586-025-08999-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:642:y:2025:i:8067:d:10.1038_s41586-025-08999-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.