Author
Listed:
- Linqiang He
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Columbia University)
- Tianjun Zhou
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Zhun Guo
(Chinese Academy of Sciences
Chinese Academy of Sciences)
Abstract
In the future, monsoon rainfall over densely populated South Asia is expected to increase, even as monsoon circulation weakens1–3. By contrast, past warm intervals were marked by both increased rainfall and a strengthening of monsoon circulation4–6, posing a challenge to understanding the response of the South Asian summer monsoon to warming. Here we show consistent South Asian summer monsoon changes in the mid-Pliocene, Last Interglacial, mid-Holocene and future scenarios, characterized by an overall increase in monsoon rainfall, a weakening of the monsoon trough-like circulation over the Bay of Bengal and a strengthening of the monsoon circulation over the northern Arabian Sea, as revealed by a compilation of proxy records and climate simulations. Increased monsoon rainfall is thermodynamically dominated by atmospheric moisture following the rich-get-richer paradigm, and dynamically dominated by the monsoon circulation driven by the enhanced land warming in subtropical western Eurasia and northern Africa. The coherent response of monsoon dynamics across warm climates reconciles past strengthening with future weakening, reinforcing confidence in future projections. Further prediction of South Asian summer monsoon circulation and rainfall by physics-based regression models using past information agrees well with climate model projections, with spatial correlation coefficients of approximately 0.8 and 0.7 under the high-emissions scenario. These findings underscore the promising potential of past analogues, bolstered by palaeoclimate reconstruction, in improving future South Asian summer monsoon projections.
Suggested Citation
Linqiang He & Tianjun Zhou & Zhun Guo, 2025.
"Past warm intervals inform the future South Asian summer monsoon,"
Nature, Nature, vol. 641(8063), pages 653-659, May.
Handle:
RePEc:nat:nature:v:641:y:2025:i:8063:d:10.1038_s41586-025-08956-6
DOI: 10.1038/s41586-025-08956-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:641:y:2025:i:8063:d:10.1038_s41586-025-08956-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.