Author
Listed:
- Mikail Khona
(MIT
MIT
MIT)
- Sarthak Chandra
(MIT
MIT)
- Ila Fiete
(MIT
MIT)
Abstract
Modular structure and function are ubiquitous in biology, from the organization of animal brains and bodies to the scale of ecosystems. However, the mechanisms of modularity emergence from non-modular precursors remain unclear. Here we introduce the principle of peak selection, a process by which purely local interactions and smooth gradients can drive the self-organization of discrete global modules. The process combines strengths of the positional and Turing pattern-formation mechanisms into a model for morphogenesis. Applied to the grid-cell system of the brain, peak selection results in the self-organization of functionally distinct modules with discretely spaced spatial periods. Applied to ecological systems, it results in discrete multispecies niches and synchronous spawning across geographically distributed coral colonies. The process exhibits self-scaling with system size and ‘topological robustness’1, which renders module emergence and module properties insensitive to most parameters. Peak selection ameliorates the fine-tuning requirement for continuous attractor dynamics in single grid-cell modules and it makes a detail-independent prediction that grid module period ratios should approximate adjacent integer ratios, providing a highly accurate match to the available data. Predictions for grid cells at the transcriptional, connectomic and physiological levels promise to elucidate the interplay of molecules, connectivity and function emergence in brains.
Suggested Citation
Mikail Khona & Sarthak Chandra & Ila Fiete, 2025.
"Global modules robustly emerge from local interactions and smooth gradients,"
Nature, Nature, vol. 640(8057), pages 155-164, April.
Handle:
RePEc:nat:nature:v:640:y:2025:i:8057:d:10.1038_s41586-024-08541-3
DOI: 10.1038/s41586-024-08541-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:640:y:2025:i:8057:d:10.1038_s41586-024-08541-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.