IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v638y2025i8052d10.1038_s41586-024-08406-9.html
   My bibliography  Save this article

Scaling and networking a modular photonic quantum computer

Author

Listed:
  • H. Aghaee Rad

    (Xanadu Quantum Technologies Inc.)

  • T. Ainsworth

    (Xanadu Quantum Technologies Inc.)

  • R. N. Alexander

    (Xanadu Quantum Technologies Inc.)

  • B. Altieri

    (Xanadu Quantum Technologies Inc.)

  • M. F. Askarani

    (Xanadu Quantum Technologies Inc.)

  • R. Baby

    (Xanadu Quantum Technologies Inc.)

  • L. Banchi

    (Xanadu Quantum Technologies Inc.)

  • B. Q. Baragiola

    (Xanadu Quantum Technologies Inc.)

  • J. E. Bourassa

    (Xanadu Quantum Technologies Inc.)

  • R. S. Chadwick

    (Xanadu Quantum Technologies Inc.)

  • I. Charania

    (Xanadu Quantum Technologies Inc.)

  • H. Chen

    (Xanadu Quantum Technologies Inc.)

  • M. J. Collins

    (Xanadu Quantum Technologies Inc.)

  • P. Contu

    (Xanadu Quantum Technologies Inc.)

  • N. D’Arcy

    (Xanadu Quantum Technologies Inc.)

  • G. Dauphinais

    (Xanadu Quantum Technologies Inc.)

  • R. Prins

    (Xanadu Quantum Technologies Inc.)

  • D. Deschenes

    (Xanadu Quantum Technologies Inc.)

  • I. Luch

    (Xanadu Quantum Technologies Inc.)

  • S. Duque

    (Xanadu Quantum Technologies Inc.)

  • P. Edke

    (Xanadu Quantum Technologies Inc.)

  • S. E. Fayer

    (Xanadu Quantum Technologies Inc.)

  • S. Ferracin

    (Xanadu Quantum Technologies Inc.)

  • H. Ferretti

    (Xanadu Quantum Technologies Inc.)

  • J. Gefaell

    (Xanadu Quantum Technologies Inc.)

  • S. Glancy

    (Xanadu Quantum Technologies Inc.)

  • C. González-Arciniegas

    (Xanadu Quantum Technologies Inc.)

  • T. Grainge

    (Xanadu Quantum Technologies Inc.)

  • Z. Han

    (Xanadu Quantum Technologies Inc.)

  • J. Hastrup

    (Xanadu Quantum Technologies Inc.)

  • L. G. Helt

    (Xanadu Quantum Technologies Inc.)

  • T. Hillmann

    (Xanadu Quantum Technologies Inc.)

  • J. Hundal

    (Xanadu Quantum Technologies Inc.)

  • S. Izumi

    (Xanadu Quantum Technologies Inc.)

  • T. Jaeken

    (Xanadu Quantum Technologies Inc.)

  • M. Jonas

    (Xanadu Quantum Technologies Inc.)

  • S. Kocsis

    (Xanadu Quantum Technologies Inc.)

  • I. Krasnokutska

    (Xanadu Quantum Technologies Inc.)

  • M. V. Larsen

    (Xanadu Quantum Technologies Inc.)

  • P. Laskowski

    (Xanadu Quantum Technologies Inc.)

  • F. Laudenbach

    (Xanadu Quantum Technologies Inc.)

  • J. Lavoie

    (Xanadu Quantum Technologies Inc.)

  • M. Li

    (Xanadu Quantum Technologies Inc.)

  • E. Lomonte

    (Xanadu Quantum Technologies Inc.)

  • C. E. Lopetegui

    (Xanadu Quantum Technologies Inc.)

  • B. Luey

    (Xanadu Quantum Technologies Inc.)

  • A. P. Lund

    (Xanadu Quantum Technologies Inc.)

  • C. Ma

    (Xanadu Quantum Technologies Inc.)

  • L. S. Madsen

    (Xanadu Quantum Technologies Inc.)

  • D. H. Mahler

    (Xanadu Quantum Technologies Inc.)

  • L. Mantilla Calderón

    (Xanadu Quantum Technologies Inc.)

  • M. Menotti

    (Xanadu Quantum Technologies Inc.)

  • F. M. Miatto

    (Xanadu Quantum Technologies Inc.)

  • B. Morrison

    (Xanadu Quantum Technologies Inc.)

  • P. J. Nadkarni

    (Xanadu Quantum Technologies Inc.)

  • T. Nakamura

    (Xanadu Quantum Technologies Inc.)

  • L. Neuhaus

    (Xanadu Quantum Technologies Inc.)

  • Z. Niu

    (Xanadu Quantum Technologies Inc.)

  • R. Noro

    (Xanadu Quantum Technologies Inc.)

  • K. Papirov

    (Xanadu Quantum Technologies Inc.)

  • A. Pesah

    (Xanadu Quantum Technologies Inc.)

  • D. S. Phillips

    (Xanadu Quantum Technologies Inc.)

  • W. N. Plick

    (Xanadu Quantum Technologies Inc.)

  • T. Rogalsky

    (Xanadu Quantum Technologies Inc.)

  • F. Rortais

    (Xanadu Quantum Technologies Inc.)

  • J. Sabines-Chesterking

    (Xanadu Quantum Technologies Inc.)

  • S. Safavi-Bayat

    (Xanadu Quantum Technologies Inc.)

  • E. Sazhaev

    (Xanadu Quantum Technologies Inc.)

  • M. Seymour

    (Xanadu Quantum Technologies Inc.)

  • K. Rezaei Shad

    (Xanadu Quantum Technologies Inc.)

  • M. Silverman

    (Xanadu Quantum Technologies Inc.)

  • S. A. Srinivasan

    (Xanadu Quantum Technologies Inc.)

  • M. Stephan

    (Xanadu Quantum Technologies Inc.)

  • Q. Y. Tang

    (Xanadu Quantum Technologies Inc.)

  • J. F. Tasker

    (Xanadu Quantum Technologies Inc.)

  • Y. S. Teo

    (Xanadu Quantum Technologies Inc.)

  • R. B. Then

    (Xanadu Quantum Technologies Inc.)

  • J. E. Tremblay

    (Xanadu Quantum Technologies Inc.)

  • I. Tzitrin

    (Xanadu Quantum Technologies Inc.)

  • V. D. Vaidya

    (Xanadu Quantum Technologies Inc.)

  • M. Vasmer

    (Xanadu Quantum Technologies Inc.)

  • Z. Vernon

    (Xanadu Quantum Technologies Inc.)

  • L. F. S. S. M. Villalobos

    (Xanadu Quantum Technologies Inc.)

  • B. W. Walshe

    (Xanadu Quantum Technologies Inc.)

  • R. Weil

    (Xanadu Quantum Technologies Inc.)

  • X. Xin

    (Xanadu Quantum Technologies Inc.)

  • X. Yan

    (Xanadu Quantum Technologies Inc.)

  • Y. Yao

    (Xanadu Quantum Technologies Inc.)

  • M. Zamani Abnili

    (Xanadu Quantum Technologies Inc.)

  • Y. Zhang

    (Xanadu Quantum Technologies Inc.)

Abstract

Photonics offers a promising platform for quantum computing1–4, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation5. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility. This combines all the primitive components as discrete, scalable rack-deployed modules networked over fibre-optic interconnects, including 84 squeezers6 and 36 photon-number-resolving detectors furnishing 12 physical qubit modes at each clock cycle. We use this machine, which we name Aurora, to synthesize a cluster state7 entangled across separate chips with 86.4 billion modes, and demonstrate its capability of implementing the foliated distance-2 repetition code with real-time decoding. The key building blocks needed for universality and fault tolerance are demonstrated: heralded synthesis of single-temporal-mode non-Gaussian resource states, real-time multiplexing actuated on photon-number-resolving detection, spatiotemporal cluster-state formation with fibre buffers, and adaptive measurements implemented using chip-integrated homodyne detectors with real-time single-clock-cycle feedforward. We also present a detailed analysis of our architecture’s tolerances for optical loss, which is the dominant and most challenging hurdle to crossing the fault-tolerant threshold. This work lays out the path to cross the fault-tolerant threshold and scale photonic quantum computers to the point of addressing useful applications.

Suggested Citation

  • H. Aghaee Rad & T. Ainsworth & R. N. Alexander & B. Altieri & M. F. Askarani & R. Baby & L. Banchi & B. Q. Baragiola & J. E. Bourassa & R. S. Chadwick & I. Charania & H. Chen & M. J. Collins & P. Cont, 2025. "Scaling and networking a modular photonic quantum computer," Nature, Nature, vol. 638(8052), pages 912-919, February.
  • Handle: RePEc:nat:nature:v:638:y:2025:i:8052:d:10.1038_s41586-024-08406-9
    DOI: 10.1038/s41586-024-08406-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-08406-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-08406-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:638:y:2025:i:8052:d:10.1038_s41586-024-08406-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.