Author
Listed:
- Jia Zhou
(University of California San Diego)
- Colleen M. Noviello
(University of California San Diego)
- Jinfeng Teng
(University of California San Diego)
- Haley Moore
(UT Southwestern Medical Center)
- Bradley Lega
(UT Southwestern Medical Center)
- Ryan E. Hibbs
(University of California San Diego
University of California San Diego)
Abstract
Type A GABA (γ-aminobutyric acid) receptors (GABAA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics1,2. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABAA receptors in the human brain have been inferred from subunit localization in tissue1,3, functional measurements and structural analysis from recombinant expression4–7 and in mice8. However, the arrangements of subunits that co-assemble physiologically in native human GABAA receptors remain unknown. Here we isolated α1 subunit-containing GABAA receptors from human patients with epilepsy. Using cryo-electron microscopy, we defined a set of 12 native subunit assemblies and their 3D structures. We address inconsistencies between previous native and recombinant approaches, and reveal details of previously undefined subunit interfaces. Drug-like densities in a subset of these interfaces led us to uncover unexpected activity on the GABAA receptor of antiepileptic drugs and resulted in localization of one of these drugs to the benzodiazepine-binding site. Proteomics and further structural analysis suggest interactions with the auxiliary subunits neuroligin 2 and GARLH4, which localize and modulate GABAA receptors at inhibitory synapses. This work provides a structural foundation for understanding GABAA receptor signalling and targeted pharmacology in the human brain.
Suggested Citation
Jia Zhou & Colleen M. Noviello & Jinfeng Teng & Haley Moore & Bradley Lega & Ryan E. Hibbs, 2025.
"Resolving native GABAA receptor structures from the human brain,"
Nature, Nature, vol. 638(8050), pages 562-568, February.
Handle:
RePEc:nat:nature:v:638:y:2025:i:8050:d:10.1038_s41586-024-08454-1
DOI: 10.1038/s41586-024-08454-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:638:y:2025:i:8050:d:10.1038_s41586-024-08454-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.