IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v617y2023i7961d10.1038_s41586-023-05886-z.html
   My bibliography  Save this article

CO2-mediated organocatalytic chlorine evolution under industrial conditions

Author

Listed:
  • Jiarui Yang

    (Tsinghua University)

  • Wen-Hao Li

    (Tsinghua University)

  • Hai-Tao Tang

    (School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University)

  • Ying-Ming Pan

    (School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University)

  • Dingsheng Wang

    (Tsinghua University)

  • Yadong Li

    (Tsinghua University)

Abstract

During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1–4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5–8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9–11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14–18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m−2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl− batteries and organic synthesis19–21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.

Suggested Citation

  • Jiarui Yang & Wen-Hao Li & Hai-Tao Tang & Ying-Ming Pan & Dingsheng Wang & Yadong Li, 2023. "CO2-mediated organocatalytic chlorine evolution under industrial conditions," Nature, Nature, vol. 617(7961), pages 519-523, May.
  • Handle: RePEc:nat:nature:v:617:y:2023:i:7961:d:10.1038_s41586-023-05886-z
    DOI: 10.1038/s41586-023-05886-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05886-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05886-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:617:y:2023:i:7961:d:10.1038_s41586-023-05886-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.