IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v608y2022i7924d10.1038_s41586-022-04986-6.html
   My bibliography  Save this article

Quantum error correction with silicon spin qubits

Author

Listed:
  • Kenta Takeda

    (RIKEN)

  • Akito Noiri

    (RIKEN)

  • Takashi Nakajima

    (RIKEN)

  • Takashi Kobayashi

    (RIKEN)

  • Seigo Tarucha

    (RIKEN
    RIKEN)

Abstract

Future large-scale quantum computers will rely on quantum error correction (QEC) to protect the fragile quantum information during computation1,2. Among the possible candidate platforms for realizing quantum computing devices, the compatibility with mature nanofabrication technologies of silicon-based spin qubits offers promise to overcome the challenges in scaling up device sizes from the prototypes of today to large-scale computers3–5. Recent advances in silicon-based qubits have enabled the implementations of high-quality one-qubit and two-qubit systems6–8. However, the demonstration of QEC, which requires three or more coupled qubits1, and involves a three-qubit gate9–11 or measurement-based feedback, remains an open challenge. Here we demonstrate a three-qubit phase-correcting code in silicon, in which an encoded three-qubit state is protected against any phase-flip error on one of the three qubits. The correction to this encoded state is performed by a three-qubit conditional rotation, which we implement by an efficient single-step resonantly driven iToffoli gate. As expected, the error correction mitigates the errors owing to one-qubit phase-flip, as well as the intrinsic dephasing mainly owing to quasi-static phase noise. These results show successful implementation of QEC and the potential of a silicon-based platform for large-scale quantum computing.

Suggested Citation

  • Kenta Takeda & Akito Noiri & Takashi Nakajima & Takashi Kobayashi & Seigo Tarucha, 2022. "Quantum error correction with silicon spin qubits," Nature, Nature, vol. 608(7924), pages 682-686, August.
  • Handle: RePEc:nat:nature:v:608:y:2022:i:7924:d:10.1038_s41586-022-04986-6
    DOI: 10.1038/s41586-022-04986-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04986-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04986-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhang & Linshan Liu & Chaofeng Zheng & Wang Li & Chunru Wang & Taishan Wang, 2023. "Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:608:y:2022:i:7924:d:10.1038_s41586-022-04986-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.