IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v603y2022i7902d10.1038_s41586-022-04498-3.html
   My bibliography  Save this article

Activation mechanism of the class D fungal GPCR dimer Ste2

Author

Listed:
  • Vaithish Velazhahan

    (Francis Crick Avenue)

  • Ning Ma

    (Beckman Research Institute of the City of Hope)

  • Nagarajan Vaidehi

    (Beckman Research Institute of the City of Hope)

  • Christopher G. Tate

    (Francis Crick Avenue)

Abstract

The fungal class D1 G-protein-coupled receptor (GPCR) Ste2 has a different arrangement of transmembrane helices compared with mammalian GPCRs and a distinct mode of coupling to the heterotrimeric G protein Gpa1–Ste2–Ste181. In addition, Ste2 lacks conserved sequence motifs such as DRY, PIF and NPXXY, which are associated with the activation of class A GPCRs2. This suggested that the activation mechanism of Ste2 may also differ. Here we determined structures of Saccharomyces cerevisiae Ste2 in the absence of G protein in two different conformations bound to the native agonist α-factor, bound to an antagonist and without ligand. These structures revealed that Ste2 is indeed activated differently from other GPCRs. In the inactive state, the cytoplasmic end of transmembrane helix H7 is unstructured and packs between helices H1–H6, blocking the G protein coupling site. Agonist binding results in the outward movement of the extracellular ends of H6 and H7 by 6 Å. On the intracellular surface, the G protein coupling site is formed by a 20 Å outward movement of the unstructured region in H7 that unblocks the site, and a 12 Å inward movement of H6. This is a distinct mechanism in GPCRs, in which the movement of H6 and H7 upon agonist binding facilitates G protein coupling.

Suggested Citation

  • Vaithish Velazhahan & Ning Ma & Nagarajan Vaidehi & Christopher G. Tate, 2022. "Activation mechanism of the class D fungal GPCR dimer Ste2," Nature, Nature, vol. 603(7902), pages 743-748, March.
  • Handle: RePEc:nat:nature:v:603:y:2022:i:7902:d:10.1038_s41586-022-04498-3
    DOI: 10.1038/s41586-022-04498-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04498-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04498-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moon Young Yang & Soo-Kyung Kim & William A. Goddard, 2022. "G protein coupling and activation of the metabotropic GABAB heterodimer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. T. Bertie Ansell & Wanling Song & Claire E. Coupland & Loic Carrique & Robin A. Corey & Anna L. Duncan & C. Keith Cassidy & Maxwell M. G. Geurts & Tim Rasmussen & Andrew B. Ward & Christian Siebold & , 2023. "LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:603:y:2022:i:7902:d:10.1038_s41586-022-04498-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.