IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v602y2022i7898d10.1038_s41586-021-04388-0.html
   My bibliography  Save this article

Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2

Author

Listed:
  • Lihong Liu

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Sho Iketani

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Yicheng Guo

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Jasper F.-W. Chan

    (The University of Hong Kong
    Centre for Virology, Vaccinology and Therapeutics)

  • Maple Wang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Liyuan Liu

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Yang Luo

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Hin Chu

    (The University of Hong Kong
    Centre for Virology, Vaccinology and Therapeutics)

  • Yiming Huang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Manoj S. Nair

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Jian Yu

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Kenn K.-H. Chik

    (Centre for Virology, Vaccinology and Therapeutics)

  • Terrence T.-T. Yuen

    (The University of Hong Kong)

  • Chaemin Yoon

    (The University of Hong Kong)

  • Kelvin K.-W. To

    (The University of Hong Kong
    Centre for Virology, Vaccinology and Therapeutics)

  • Honglin Chen

    (The University of Hong Kong
    Centre for Virology, Vaccinology and Therapeutics)

  • Michael T. Yin

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Magdalena E. Sobieszczyk

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Yaoxing Huang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Harris H. Wang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Zizhang Sheng

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Kwok-Yung Yuen

    (The University of Hong Kong
    Centre for Virology, Vaccinology and Therapeutics)

  • David D. Ho

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

Abstract

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.

Suggested Citation

  • Lihong Liu & Sho Iketani & Yicheng Guo & Jasper F.-W. Chan & Maple Wang & Liyuan Liu & Yang Luo & Hin Chu & Yiming Huang & Manoj S. Nair & Jian Yu & Kenn K.-H. Chik & Terrence T.-T. Yuen & Chaemin Yoo, 2022. "Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2," Nature, Nature, vol. 602(7898), pages 676-681, February.
  • Handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-021-04388-0
    DOI: 10.1038/s41586-021-04388-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04388-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04388-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khadija Khan & Farina Karim & Yashica Ganga & Mallory Bernstein & Zesuliwe Jule & Kajal Reedoy & Sandile Cele & Gila Lustig & Daniel Amoako & Nicole Wolter & Natasha Samsunder & Aida Sivro & James Emm, 2022. "Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Cai He & Jingyun Yang & Weiqi Hong & Zimin Chen & Dandan Peng & Hong Lei & Aqu Alu & Xuemei He & Zhenfei Bi & Xiaohua Jiang & Guowen Jia & Yun Yang & Yanan Zhou & Wenhai Yu & Cong Tang & Qing Huang & , 2022. "A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yin-Feng Kang & Cong Sun & Jing Sun & Chu Xie & Zhen Zhuang & Hui-Qin Xu & Zheng Liu & Yi-Hao Liu & Sui Peng & Run-Yu Yuan & Jin-Cun Zhao & Mu-Sheng Zeng, 2022. "Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Rebecca Urschel & Saskia Bronder & Verena Klemis & Stefanie Marx & Franziska Hielscher & Amina Abu-Omar & Candida Guckelmus & Sophie Schneitler & Christina Baum & Sören L. Becker & Barbara C. Gärtner , 2024. "SARS-CoV-2-specific cellular and humoral immunity after bivalent BA.4/5 COVID-19-vaccination in previously infected and non-infected individuals," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Nawal Al Kaabi & Yun Kai Yang & Li Fang Du & Ke Xu & Shuai Shao & Yu Liang & Yun Kang & Ji Guo Su & Jing Zhang & Tian Yang & Salah Hussein & Mohamed Saif ElDein & Sen Sen Yang & Wenwen Lei & Xue Jun G, 2022. "Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Shaofeng Deng & Ying Liu & Rachel Chun-Yee Tam & Pin Chen & Anna Jinxia Zhang & Bobo Wing-Yee Mok & Teng Long & Anja Kukic & Runhong Zhou & Haoran Xu & Wenjun Song & Jasper Fuk-Woo Chan & Kelvin Kai-W, 2023. "An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Zhennan Zhao & Jingya Zhou & Mingxiong Tian & Min Huang & Sheng Liu & Yufeng Xie & Pu Han & Chongzhi Bai & Pengcheng Han & Anqi Zheng & Lutang Fu & Yuanzhu Gao & Qi Peng & Ying Li & Yan Chai & Zengyua, 2022. "Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Georg M. N. Behrens & Joana Barros-Martins & Anne Cossmann & Gema Morillas Ramos & Metodi V. Stankov & Ivan Odak & Alexandra Dopfer-Jablonka & Laura Hetzel & Miriam Köhler & Gwendolyn Patzer & Christo, 2022. "BNT162b2-boosted immune responses six months after heterologous or homologous ChAdOx1nCoV-19/BNT162b2 vaccination against COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Haofeng Wang & Qi Yang & Xiaoce Liu & Zili Xu & Maolin Shao & Dongxu Li & Yinkai Duan & Jielin Tang & Xianqiang Yu & Yumin Zhang & Aihua Hao & Yajie Wang & Jie Chen & Chenghao Zhu & Luke Guddat & Hong, 2023. "Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Rafael R. G. Machado & Jordyn L. Walker & Dionna Scharton & Grace H. Rafael & Brooke M. Mitchell & Rachel A. Reyna & William M. Souza & Jianying Liu & David H. Walker & Jessica A. Plante & Kenneth S. , 2023. "Immunogenicity and efficacy of vaccine boosters against SARS-CoV-2 Omicron subvariant BA.5 in male Syrian hamsters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Hassen Kared & Asia-Sophia Wolf & Amin Alirezaylavasani & Anthony Ravussin & Guri Solum & Trung The Tran & Fridtjof Lund-Johansen & John Torgils Vaage & Lise Sofie Nissen-Meyer & Unni C. Nygaard & Ola, 2022. "Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Tomohiro Takano & Takashi Sato & Ryutaro Kotaki & Saya Moriyama & Shuetsu Fukushi & Masahiro Shinoda & Kiyomi Kabasawa & Nagashige Shimada & Mio Kousaka & Yu Adachi & Taishi Onodera & Kazutaka Terahar, 2023. "Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Elham Khatamzas & Markus H. Antwerpen & Alexandra Rehn & Alexander Graf & Johannes Christian Hellmuth & Alexandra Hollaus & Anne-Wiebe Mohr & Erik Gaitzsch & Tobias Weiglein & Enrico Georgi & Clemens , 2022. "Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Lifeng Zhang & Roy E. Welsch & Zhi Cao, 2022. "The Transmission, Infection Prevention, and Control during the COVID-19 Pandemic in China: A Retrospective Study," IJERPH, MDPI, vol. 19(5), pages 1-15, March.
    19. Alief Moulana & Thomas Dupic & Angela M. Phillips & Jeffrey Chang & Serafina Nieves & Anne A. Roffler & Allison J. Greaney & Tyler N. Starr & Jesse D. Bloom & Michael M. Desai, 2022. "Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Moriya Tsuji & Manoj S. Nair & Kazuya Masuda & Candace Castagna & Zhenlu Chong & Tamarand L. Darling & Kuljeet Seehra & Youngmin Hwang & Ágata Lopes Ribeiro & Geovane Marques Ferreira & Laura Corredor, 2023. "An immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections in vivo," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    21. Alexandra Xan C. H. Nowakowski, 2023. "Same Old New Normal: The Ableist Fallacy of “Post-Pandemic” Work," Social Inclusion, Cogitatio Press, vol. 11(1), pages 16-25.
    22. Xiaolei Wang & Terrence Tsz-Tai Yuen & Ying Dou & Jingchu Hu & Renhao Li & Zheng Zeng & Xuansheng Lin & Huarui Gong & Celia Hoi-Ching Chan & Chaemin Yoon & Huiping Shuai & Deborah Tip-Yin Ho & Ivan Fa, 2023. "Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-021-04388-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.