IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7890d10.1038_s41586-021-04201-y.html
   My bibliography  Save this article

Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons

Author

Listed:
  • Raymond E. Blackwell

    (University of California)

  • Fangzhou Zhao

    (University of California
    Lawrence Berkeley National Laboratory)

  • Erin Brooks

    (University of California)

  • Junmian Zhu

    (University of California)

  • Ilya Piskun

    (University of California)

  • Shenkai Wang

    (University of California)

  • Aidan Delgado

    (University of California)

  • Yea-Lee Lee

    (University of California)

  • Steven G. Louie

    (University of California
    Lawrence Berkeley National Laboratory)

  • Felix R. Fischer

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoScience Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory)

Abstract

Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6–8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10–15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15–21.

Suggested Citation

  • Raymond E. Blackwell & Fangzhou Zhao & Erin Brooks & Junmian Zhu & Ilya Piskun & Shenkai Wang & Aidan Delgado & Yea-Lee Lee & Steven G. Louie & Felix R. Fischer, 2021. "Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons," Nature, Nature, vol. 600(7890), pages 647-652, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7890:d:10.1038_s41586-021-04201-y
    DOI: 10.1038/s41586-021-04201-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04201-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04201-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jens Brede & Nestor Merino-Díez & Alejandro Berdonces-Layunta & Sofía Sanz & Amelia Domínguez-Celorrio & Jorge Lobo-Checa & Manuel Vilas-Varela & Diego Peña & Thomas Frederiksen & José I. Pascual & Di, 2023. "Detecting the spin-polarization of edge states in graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7890:d:10.1038_s41586-021-04201-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.