IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v597y2021i7878d10.1038_s41586-021-03892-7.html
   My bibliography  Save this article

A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis

Author

Listed:
  • Martina Absinta

    (Johns Hopkins University School of Medicine
    National Institutes of Health
    IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University)

  • Dragan Maric

    (National Institutes of Health)

  • Marjan Gharagozloo

    (Johns Hopkins University School of Medicine)

  • Thomas Garton

    (Johns Hopkins University School of Medicine)

  • Matthew D. Smith

    (Johns Hopkins University School of Medicine)

  • Jing Jin

    (Johns Hopkins University School of Medicine)

  • Kathryn C. Fitzgerald

    (Johns Hopkins University School of Medicine)

  • Anya Song

    (University of Massachusetts Medical School)

  • Poching Liu

    (National Heart, Lung, and Blood Institute, National Institutes of Health)

  • Jing-Ping Lin

    (National Institutes of Health)

  • Tianxia Wu

    (National Institutes of Health)

  • Kory R. Johnson

    (National Institutes of Health)

  • Dorian B. McGavern

    (National Institutes of Health)

  • Dorothy P. Schafer

    (University of Massachusetts Medical School)

  • Peter A. Calabresi

    (Johns Hopkins University School of Medicine)

  • Daniel S. Reich

    (National Institutes of Health)

Abstract

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1–3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4–6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define ‘microglia inflamed in MS’ (MIMS) and ‘astrocytes inflamed in MS’, glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.

Suggested Citation

  • Martina Absinta & Dragan Maric & Marjan Gharagozloo & Thomas Garton & Matthew D. Smith & Jing Jin & Kathryn C. Fitzgerald & Anya Song & Poching Liu & Jing-Ping Lin & Tianxia Wu & Kory R. Johnson & Dor, 2021. "A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis," Nature, Nature, vol. 597(7878), pages 709-714, September.
  • Handle: RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03892-7
    DOI: 10.1038/s41586-021-03892-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03892-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03892-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janos Groh & Tassnim Abdelwahab & Yogita Kattimani & Michaela Hörner & Silke Loserth & Viktoria Gudi & Robert Adalbert & Fabian Imdahl & Antoine-Emmanuel Saliba & Michael Coleman & Martin Stangel & Mi, 2023. "Microglia-mediated demyelination protects against CD8+ T cell-driven axon degeneration in mice carrying PLP defects," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Erik Nutma & Nurun Fancy & Maria Weinert & Stergios Tsartsalis & Manuel C. Marzin & Robert C. J. Muirhead & Irene Falk & Marjolein Breur & Joy Bruin & David Hollaus & Robin Pieterman & Jasper Anink & , 2023. "Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    3. Aletta M. R. Bosch & Marlijn Poel & Nina L. Fransen & Maria C. J. Vincenten & Anneleen M. Bobeldijk & Aldo Jongejan & Hendrik J. Engelenburg & Perry D. Moerland & Joost Smolders & Inge Huitinga & Jörg, 2024. "Profiling of microglia nodules in multiple sclerosis reveals propensity for lesion formation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Zu-Qiang Liu & Hao Dai & Lu Yao & Wei-Feng Chen & Yun Wang & Li-Yun Ma & Xiao-Qing Li & Sheng-Li Lin & Meng-Jiang He & Ping-Ting Gao & Xin-Yang Liu & Jia-Xin Xu & Xiao-Yue Xu & Ke-Hao Wang & Li Wang &, 2023. "A single-cell transcriptional landscape of immune cells shows disease-specific changes of T cell and macrophage populations in human achalasia," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Jing-Ping Lin & Hannah M. Kelly & Yeajin Song & Riki Kawaguchi & Daniel H. Geschwind & Steven Jacobson & Daniel S. Reich, 2022. "Transcriptomic architecture of nuclei in the marmoset CNS," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Rasmus Berglund & Yufei Cheng & Eliane Piket & Milena Z. Adzemovic & Manuel Zeitelhofer & Tomas Olsson & Andre Ortlieb Guerreiro-Cacais & Maja Jagodic, 2024. "The aging mouse CNS is protected by an autophagy-dependent microglia population promoted by IL-34," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Florian Pernin & Qiao-Ling Cui & Abdulshakour Mohammadnia & Milton G. F. Fernandes & Jeffery A. Hall & Myriam Srour & Roy W. R. Dudley & Stephanie E. J. Zandee & Wendy Klement & Alexandre Prat & Hanna, 2024. "Regulation of stress granule formation in human oligodendrocytes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Mathias Linnerbauer & Tobias Beyer & Lucy Nirschl & Daniel Farrenkopf & Lena Lößlein & Oliver Vandrey & Anne Peter & Thanos Tsaktanis & Hania Kebir & David Laplaud & Rupert Oellinger & Thomas Engleitn, 2023. "PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03892-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.