IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v597y2021i7877d10.1038_s41586-021-03831-6.html
   My bibliography  Save this article

Three-dimensional magnetic stripes require slow cooling in fast-spread lower ocean crust

Author

Listed:
  • Sarah M. Maher

    (University of California, San Diego)

  • Jeffrey S. Gee

    (University of California, San Diego)

  • Michael J. Cheadle

    (University of Wyoming)

  • Barbara E. John

    (University of Wyoming)

Abstract

Earth’s magnetic field is recorded as oceanic crust cools, generating lineated magnetic anomalies that provide the pattern of polarity reversals for the past 160 million years1. In the lower (gabbroic) crust, polarity interval boundaries are proxies for isotherms that constrain cooling and hence crustal accretion. Seismic observations2–4, geospeedometry5–7 and thermal modelling8–10 of fast-spread crust yield conflicting interpretations of where and how heat is lost near the ridge, a sensitive indicator of processes of melt transport and crystallization within the crust. Here we show that the magnetic structure of magmatically robust fast-spread crust requires that crustal temperatures near the dike–gabbro transition remain at approximately 500 degrees Celsius for 0.1 million years. Near-bottom magnetization solutions over two areas, separated by approximately 8 kilometres, highlight subhorizontal polarity boundaries within 200 metres of the dike–gabbro transition that extend 7–8 kilometres off-axis. Oriented samples with multiple polarity components provide direct confirmation of a corresponding horizontal polarity boundary across an area approximately one kilometre wide, and indicate slow cooling over three polarity intervals. Our results are incompatible with deep hydrothermal cooling within a few kilometres of the axis2,7 and instead suggest a broad, hot axial zone that extends roughly 8 kilometres off-axis in magmatically robust fast-spread ocean crust.

Suggested Citation

  • Sarah M. Maher & Jeffrey S. Gee & Michael J. Cheadle & Barbara E. John, 2021. "Three-dimensional magnetic stripes require slow cooling in fast-spread lower ocean crust," Nature, Nature, vol. 597(7877), pages 511-515, September.
  • Handle: RePEc:nat:nature:v:597:y:2021:i:7877:d:10.1038_s41586-021-03831-6
    DOI: 10.1038/s41586-021-03831-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03831-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03831-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:597:y:2021:i:7877:d:10.1038_s41586-021-03831-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.