IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v593y2021i7858d10.1038_s41586-021-03460-z.html
   My bibliography  Save this article

HP1 drives de novo 3D genome reorganization in early Drosophila embryos

Author

Listed:
  • Fides Zenk

    (Max Planck Institute of Immunobiology and Epigenetics
    Albert-Ludwigs-Universität Freiburg)

  • Yinxiu Zhan

    (Friedrich Miescher Institute for Biomedical Research
    University of Basel)

  • Pavel Kos

    (Friedrich Miescher Institute for Biomedical Research)

  • Eva Löser

    (Max Planck Institute of Immunobiology and Epigenetics)

  • Nazerke Atinbayeva

    (Max Planck Institute of Immunobiology and Epigenetics
    Albert-Ludwigs-Universität Freiburg
    University of Freiburg)

  • Melanie Schächtle

    (Max Planck Institute of Immunobiology and Epigenetics)

  • Guido Tiana

    (Università degli Studi di Milano and INFN)

  • Luca Giorgetti

    (Friedrich Miescher Institute for Biomedical Research)

  • Nicola Iovino

    (Max Planck Institute of Immunobiology and Epigenetics)

Abstract

Fundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.

Suggested Citation

  • Fides Zenk & Yinxiu Zhan & Pavel Kos & Eva Löser & Nazerke Atinbayeva & Melanie Schächtle & Guido Tiana & Luca Giorgetti & Nicola Iovino, 2021. "HP1 drives de novo 3D genome reorganization in early Drosophila embryos," Nature, Nature, vol. 593(7858), pages 289-293, May.
  • Handle: RePEc:nat:nature:v:593:y:2021:i:7858:d:10.1038_s41586-021-03460-z
    DOI: 10.1038/s41586-021-03460-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03460-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03460-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dafne Ibarra-Morales & Michael Rauer & Piergiuseppe Quarato & Leily Rabbani & Fides Zenk & Mariana Schulte-Sasse & Francesco Cardamone & Alejandro Gomez-Auli & Germano Cecere & Nicola Iovino, 2021. "Histone variant H2A.Z regulates zygotic genome activation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Jun Sun & Jiale Qu & Cai Zhao & Xinyao Zhang & Xinyu Liu & Jia Wang & Chao Wei & Xinyi Liu & Mulan Wang & Pengguihang Zeng & Xiuxiao Tang & Xiaoru Ling & Li Qing & Shaoshuai Jiang & Jiahao Chen & Tara, 2024. "Precise prediction of phase-separation key residues by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:593:y:2021:i:7858:d:10.1038_s41586-021-03460-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.