IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v592y2021i7856d10.1038_s41586-021-03432-3.html
   My bibliography  Save this article

Direct assessment of the acidity of individual surface hydroxyls

Author

Listed:
  • Margareta Wagner

    (TU Wien
    Brno University of Technology)

  • Bernd Meyer

    (Friedrich-Alexander-Universität Erlangen-Nürnberg
    Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Martin Setvin

    (TU Wien
    Faculty of Mathematics and Physics)

  • Michael Schmid

    (TU Wien)

  • Ulrike Diebold

    (TU Wien)

Abstract

The state of deprotonation/protonation of surfaces has far-ranging implications in chemistry, from acid–base catalysis1 and the electrocatalytic and photocatalytic splitting of water2, to the behaviour of minerals3 and biochemistry4. An entity’s acidity is described by its proton affinity and its acid dissociation constant pKa (the negative logarithm of the equilibrium constant of the proton transfer reaction in solution). The acidity of individual sites is difficult to assess for solids, compared with molecules. For mineral surfaces, the acidity is estimated by semi-empirical concepts, such as bond-order valence sums5, and increasingly modelled with first-principles molecular dynamics simulations6,7. At present, such predictions cannot be tested—experimental measures, such as the point of zero charge8, integrate over the whole surface or, in some cases, individual crystal facets9. Here we assess the acidity of individual hydroxyl groups on In2O3(111)—a model oxide with four different types of surface oxygen atom. We probe the strength of their hydrogen bonds with the tip of a non-contact atomic force microscope and find quantitative agreement with density functional theory calculations. By relating the results to known proton affinities of gas-phase molecules, we determine the proton affinity of the different surface sites of In2O3 with atomic precision. Measurements on hydroxylated titanium dioxide and zirconium oxide extend our method to other oxides.

Suggested Citation

  • Margareta Wagner & Bernd Meyer & Martin Setvin & Michael Schmid & Ulrike Diebold, 2021. "Direct assessment of the acidity of individual surface hydroxyls," Nature, Nature, vol. 592(7856), pages 722-725, April.
  • Handle: RePEc:nat:nature:v:592:y:2021:i:7856:d:10.1038_s41586-021-03432-3
    DOI: 10.1038/s41586-021-03432-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03432-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03432-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochuan Ma & Yongliang Shi & Zhengwang Cheng & Xiaofeng Liu & Jianyi Liu & Ziyang Guo & Xuefeng Cui & Xia Sun & Jin Zhao & Shijing Tan & Bing Wang, 2024. "Unveiling diverse coordination-defined electronic structures of reconstructed anatase TiO2(001)-(1 × 4) surface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:592:y:2021:i:7856:d:10.1038_s41586-021-03432-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.