IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v583y2020i7818d10.1038_s41586-020-2342-5.html
   My bibliography  Save this article

Pathogenesis and transmission of SARS-CoV-2 in golden hamsters

Author

Listed:
  • Sin Fun Sia

    (The University of Hong Kong)

  • Li-Meng Yan

    (The University of Hong Kong)

  • Alex W. H. Chin

    (The University of Hong Kong)

  • Kevin Fung

    (The University of Hong Kong)

  • Ka-Tim Choy

    (The University of Hong Kong)

  • Alvina Y. L. Wong

    (The University of Hong Kong)

  • Prathanporn Kaewpreedee

    (The University of Hong Kong)

  • Ranawaka A. P. M. Perera

    (The University of Hong Kong)

  • Leo L. M. Poon

    (The University of Hong Kong)

  • John M. Nicholls

    (The University of Hong Kong)

  • Malik Peiris

    (The University of Hong Kong)

  • Hui-Ling Yen

    (The University of Hong Kong)

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6–7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.

Suggested Citation

  • Sin Fun Sia & Li-Meng Yan & Alex W. H. Chin & Kevin Fung & Ka-Tim Choy & Alvina Y. L. Wong & Prathanporn Kaewpreedee & Ranawaka A. P. M. Perera & Leo L. M. Poon & John M. Nicholls & Malik Peiris & Hui, 2020. "Pathogenesis and transmission of SARS-CoV-2 in golden hamsters," Nature, Nature, vol. 583(7818), pages 834-838, July.
  • Handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2342-5
    DOI: 10.1038/s41586-020-2342-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2342-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2342-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2342-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.