IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v582y2020i7810d10.1038_s41586-020-2318-5.html
   My bibliography  Save this article

Observation of Laughlin states made of light

Author

Listed:
  • Logan W. Clark

    (University of Chicago
    University of Chicago)

  • Nathan Schine

    (University of Chicago
    University of Chicago)

  • Claire Baum

    (University of Chicago
    University of Chicago)

  • Ningyuan Jia

    (University of Chicago
    University of Chicago)

  • Jonathan Simon

    (University of Chicago
    University of Chicago)

Abstract

Much of the richness in nature emerges because simple constituents form an endless variety of ordered states1. Whereas many such states are fully characterized by symmetries2, interacting quantum systems can exhibit topological order and are instead characterized by intricate patterns of entanglement3,4. A paradigmatic example of topological order is the Laughlin state5, which minimizes the interaction energy of charged particles in a magnetic field and underlies the fractional quantum Hall effect6. Efforts have been made to enhance our understanding of topological order by forming Laughlin states in synthetic systems of ultracold atoms7,8 or photons9–11. Nonetheless, electron gases remain the only systems in which such topological states have been definitively observed6,12–14. Here we create Laughlin-ordered photon pairs using a gas of strongly interacting, lowest-Landau-level polaritons as a photon collider. Initially uncorrelated photons enter a cavity and hybridize with atomic Rydberg excitations to form polaritons15–17, quasiparticles that here behave like electrons in the lowest Landau level owing to a synthetic magnetic field created by Floquet engineering18 a twisted cavity11,19 and by Rydberg-mediated interactions between them16,17,20,21. Polariton pairs collide and self-organize to avoid each other while conserving angular momentum. Our finite-lifetime polaritons only weakly prefer such organization. Therefore, we harness the unique tunability of Floquet polaritons to distil high-fidelity Laughlin states of photons outside the cavity. Particle-resolved measurements show that these photons avoid each other and exhibit angular momentum correlations, the hallmarks of Laughlin physics. This work provides broad prospects for the study of topological quantum light22.

Suggested Citation

  • Logan W. Clark & Nathan Schine & Claire Baum & Ningyuan Jia & Jonathan Simon, 2020. "Observation of Laughlin states made of light," Nature, Nature, vol. 582(7810), pages 41-45, June.
  • Handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2318-5
    DOI: 10.1038/s41586-020-2318-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2318-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2318-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqing Li & Huiying Du & Yunfei Wang & Junjun Liang & Liantuan Xiao & Wei Yi & Jie Ma & Suotang Jia, 2023. "Observation of frustrated chiral dynamics in an interacting triangular flux ladder," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022. "Topological band structure via twisted photons in a degenerate cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Luheng Zhao & Michael Dao Kang Lee & Mohammad Mujahid Aliyu & Huanqian Loh, 2023. "Floquet-tailored Rydberg interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2318-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.