IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7800d10.1038_s41586-020-2104-4.html
   My bibliography  Save this article

A mechanism of ferritin crystallization revealed by cryo-STEM tomography

Author

Listed:
  • Lothar Houben

    (Weizmann Institute of Science)

  • Haim Weissman

    (Weizmann Institute of Science)

  • Sharon G. Wolf

    (Weizmann Institute of Science)

  • Boris Rybtchinski

    (Weizmann Institute of Science)

Abstract

Protein crystallization is important in structural biology, disease research and pharmaceuticals. It has recently been recognized that nonclassical crystallization—involving initial formation of an amorphous precursor phase—occurs often in protein, organic and inorganic crystallization processes1–5. A two-step nucleation theory has thus been proposed, in which initial low-density, solvated amorphous aggregates subsequently densify, leading to nucleation4,6,7. This view differs from classical nucleation theory, which implies that crystalline nuclei forming in solution have the same density and structure as does the final crystalline state1. A protein crystallization mechanism involving this classical pathway has recently been observed directly8. However, a molecular mechanism of nonclassical protein crystallization9–15 has not been established9,11,14. To determine the nature of the amorphous precursors and whether crystallization takes place within them (and if so, how order develops at the molecular level), three-dimensional (3D) molecular-level imaging of a crystallization process is required. Here we report cryogenic scanning transmission microscopy tomography of ferritin aggregates at various stages of crystallization, followed by 3D reconstruction using simultaneous iterative reconstruction techniques to provide a 3D picture of crystallization with molecular resolution. As crystalline order gradually increased in the studied aggregates, they exhibited an increase in both order and density from their surface towards their interior. We observed no highly ordered small structures typical of a classical nucleation process, and occasionally we observed several ordered domains emerging within one amorphous aggregate, a phenomenon not predicted by either classical or two-step nucleation theories. Our molecular-level analysis hints at desolvation as the driver of the continuous order-evolution mechanism, a view that goes beyond current nucleation models, yet is consistent with a broad spectrum of protein crystallization mechanisms.

Suggested Citation

  • Lothar Houben & Haim Weissman & Sharon G. Wolf & Boris Rybtchinski, 2020. "A mechanism of ferritin crystallization revealed by cryo-STEM tomography," Nature, Nature, vol. 579(7800), pages 540-543, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2104-4
    DOI: 10.1038/s41586-020-2104-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2104-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2104-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2104-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.